After recalling the relevant Moser-Bangert results, Extensions of Moser-Bangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties. Subsequent chapters build upon the introductory results, making the monograph self contained.
Part I introduces a variational approach involving a renormalized functional to characterize the basic heteroclinic solutions obtained by Bangert. Following that, Parts II and III employ these basic solutions together with constrained minimization methods to construct multitransition heteroclinic and homoclinic solutions on R×Tn-1 and R2×Tn-2, respectively, as local minima of the renormalized functional. The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This book contains a study of the solution set to (PDE), expanding work by Moser and Bangert and previous work by the authors for (AC). ... This is an important piece of work concerning a difficult and deep matter. ... This a very good demonstration of the power of variational methods, showing that they can be modified, extended and combined in order to deal with many different kinds of problems." (Jesús Hernández, Mathematical Reviews, Issue 2012 m)