The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.¿
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This book develops the classical Chebyshev approach to optimization problems in polynomial spaces. This approach yields an analytical representation for the solution in terms of Riemann surfaces. The text includes numerous problems, exercises, and illustrations. ... In this book, methods from various areas of mathematics are used. ... It has more than 150 pages throughout which the author makes a lot of effort to give as many results as possible, and yet provide lots of details to make the reading easier." (Konstantin Malyutin, Zentralblatt MATH, Vol. 1252, 2012)