147,95 €
147,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
74 °P sammeln
147,95 €
147,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
74 °P sammeln
Als Download kaufen
147,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
74 °P sammeln
Jetzt verschenken
147,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
74 °P sammeln
  • Format: ePub

It is commonly accepted that the majority of engineering failures happen due to fatigue or fracture phenomena. Adhesive bonding is a prevailing joining technique, widely used for critical connections in composite structures. However, the lack of knowledge regarding fatigue and fracture behaviour, and the shortage of tools for credible fatigue design, hinders the potential benefits of adhesively bonded joints. The demand for reliable and safe structures necessitates deep knowledge in this area in order to avoid catastrophic structural failures.
This book reviews recent research in the field
…mehr

Produktbeschreibung
It is commonly accepted that the majority of engineering failures happen due to fatigue or fracture phenomena. Adhesive bonding is a prevailing joining technique, widely used for critical connections in composite structures. However, the lack of knowledge regarding fatigue and fracture behaviour, and the shortage of tools for credible fatigue design, hinders the potential benefits of adhesively bonded joints. The demand for reliable and safe structures necessitates deep knowledge in this area in order to avoid catastrophic structural failures.

This book reviews recent research in the field of fatigue and fracture of adhesively-bonded composite joints. The first part of the book discusses the experimental investigation of the reliability of adhesively-bonded composite joints, current research on understanding damage mechanisms, fatigue and fracture, durability and ageing as well as implications for design. The second part of the book covers the modelling of bond performance and failure mechanisms in different loading conditions.

  • A detailed reference work for researchers in aerospace and engineering
  • Expert coverage of different adhesively bonded composite joint structures
  • An overview of joint failure

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr Anastasios P. Vassilopoulos is a Senior Scientist (MER) in the Composite Construction Laboratory (CCLab) at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. He has an international reputation for his work on fatigue life prediction of composite materials under complex, irregular stress states and his contribution in the development of novel experimental procedures for the analysis of the fatigue/fracture behavior of composites.