Federated Learning (eBook, ePUB)
Unlocking the Power of Collaborative Intelligence
Redaktion: Uddin, M. Irfan; Mashwani, Wali Khan
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Federated Learning (eBook, ePUB)
Unlocking the Power of Collaborative Intelligence
Redaktion: Uddin, M. Irfan; Mashwani, Wali Khan
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
With detailed case studies and step-by-step implementation guides, this book shows how to build and deploy federated learning systems in real-world scenarios - such as in healthcare, finance, IoT, and edge computing.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Hongjian SunBlockchain and Artificial Intelligence Technologies for Smart Energy Systems (eBook, ePUB)78,95 €
- Artificial Intelligence for Cyber Defense and Smart Policing (eBook, ePUB)52,95 €
- Applied Intelligence for Industry 4.0 (eBook, ePUB)52,95 €
- Dinesh C. VermaFederated AI for Real-World Business Scenarios (eBook, ePUB)56,95 €
- Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence (eBook, ePUB)109,95 €
- Applications of Optimization and Machine Learning in Image Processing and IoT (eBook, ePUB)50,95 €
- Cognitive Computing for Internet of Medical Things (eBook, ePUB)51,95 €
-
-
-
With detailed case studies and step-by-step implementation guides, this book shows how to build and deploy federated learning systems in real-world scenarios - such as in healthcare, finance, IoT, and edge computing.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Erscheinungstermin: 6. September 2024
- Englisch
- ISBN-13: 9781040115350
- Artikelnr.: 72251163
- Verlag: Taylor & Francis
- Erscheinungstermin: 6. September 2024
- Englisch
- ISBN-13: 9781040115350
- Artikelnr.: 72251163
M. Irfan Uddin is currently working as a faculty member at the Institute of Computing, Kohat University of Science and Technology, Kohat, Pakistan. He has received his academic qualifications in computer science and has worked as a researcher on funded projects. He is involved in teaching and research activities related to different diverse computer science topics and has more than 18 years of teaching plus research experience. He is a member of IEEE, ACM, and HiPEAC. He has organized national and international seminars, workshops, and conferences. He has published over a hundred research papers in international journals and conferences. His research interests include machine learning, data science, artificial neural networks, deep learning, convolutional neural networks, recurrent neural networks, attention models, reinforcement learning, generative adversarial networks, computer vision, image processing, machine translation, natural language processing, speech recognition, big data analytics, parallel programming, multi-core, many-core, and GPUs. Wali Khan Mashwani received an M.Sc. degree in mathematics from the University of Peshawar, Khyber Pakhtunkhwa, Pakistan, in 1996, and a Ph.D. degree in mathematics from the University of Essex, UK, in 2012. He is currently a Professor of Mathematics and the Director of the Institute of Numerical Sciences, Kohat University of Science and Technology (KUST), Khyber Pakhtunkhwa. He is also a Dean of the Physical and Numerical Science faculty at KUST. He has published more than 100 academic papers in peer-reviewed international journals and conference proceedings. His research interests include evolutionary computation, hybrid evolutionary multi-objective algorithms, decomposition-based evolutionary methods for multi-objective optimization, mathematical programming, numerical analysis, and artificial neural networks.
1. Introduction to Federated Learning
Vaneeza Mobin
2. Foundations of Deep Learning
Sajid Ullah
3. Chronicles of Deep Learning
Syed Atif Ali Shah and Nasir Algeelani
4. User Participation and Incentives in Federated Learning
Muhammad Ali Zeb and Samina Amin
5. A Hybrid Recommender System for MOOC Integrating Collaborative and
Content-based Filtering
Samina Amin and Muhammad Ali Zeb
6. Federated Learning in Healthcare
Muhammad Hamza
7. Scalability and Efficiency in Federated Learning
Alyan Zaib
8. Privacy Preservation in Federated Learning
P. Keerthana, M. Kavitha, and Jayasudha Subburaj
9. Federated Learning: Trust, Fairness, and Accountability
Sana Daud
10. Federated Optimization Algorithms
S. Biruntha, S. Rajalakshimi, M. Kavitha, and Rama Ranjini
Vaneeza Mobin
2. Foundations of Deep Learning
Sajid Ullah
3. Chronicles of Deep Learning
Syed Atif Ali Shah and Nasir Algeelani
4. User Participation and Incentives in Federated Learning
Muhammad Ali Zeb and Samina Amin
5. A Hybrid Recommender System for MOOC Integrating Collaborative and
Content-based Filtering
Samina Amin and Muhammad Ali Zeb
6. Federated Learning in Healthcare
Muhammad Hamza
7. Scalability and Efficiency in Federated Learning
Alyan Zaib
8. Privacy Preservation in Federated Learning
P. Keerthana, M. Kavitha, and Jayasudha Subburaj
9. Federated Learning: Trust, Fairness, and Accountability
Sana Daud
10. Federated Optimization Algorithms
S. Biruntha, S. Rajalakshimi, M. Kavitha, and Rama Ranjini
1. Introduction to Federated Learning
Vaneeza Mobin
2. Foundations of Deep Learning
Sajid Ullah
3. Chronicles of Deep Learning
Syed Atif Ali Shah and Nasir Algeelani
4. User Participation and Incentives in Federated Learning
Muhammad Ali Zeb and Samina Amin
5. A Hybrid Recommender System for MOOC Integrating Collaborative and
Content-based Filtering
Samina Amin and Muhammad Ali Zeb
6. Federated Learning in Healthcare
Muhammad Hamza
7. Scalability and Efficiency in Federated Learning
Alyan Zaib
8. Privacy Preservation in Federated Learning
P. Keerthana, M. Kavitha, and Jayasudha Subburaj
9. Federated Learning: Trust, Fairness, and Accountability
Sana Daud
10. Federated Optimization Algorithms
S. Biruntha, S. Rajalakshimi, M. Kavitha, and Rama Ranjini
Vaneeza Mobin
2. Foundations of Deep Learning
Sajid Ullah
3. Chronicles of Deep Learning
Syed Atif Ali Shah and Nasir Algeelani
4. User Participation and Incentives in Federated Learning
Muhammad Ali Zeb and Samina Amin
5. A Hybrid Recommender System for MOOC Integrating Collaborative and
Content-based Filtering
Samina Amin and Muhammad Ali Zeb
6. Federated Learning in Healthcare
Muhammad Hamza
7. Scalability and Efficiency in Federated Learning
Alyan Zaib
8. Privacy Preservation in Federated Learning
P. Keerthana, M. Kavitha, and Jayasudha Subburaj
9. Federated Learning: Trust, Fairness, and Accountability
Sana Daud
10. Federated Optimization Algorithms
S. Biruntha, S. Rajalakshimi, M. Kavitha, and Rama Ranjini