George N. Fursey
Field Emission in Vacuum Microelectronics (eBook, PDF)
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
George N. Fursey
Field Emission in Vacuum Microelectronics (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Field emission is a phenomenon described by quantum mechanics. Its emission capability is millions times higher than that of any other known types of electron emission. Nowadays this phenomenon is experiencing a new life due to wonderful applications in the atomic resolution microscopy, in electronic holography, and in the vacuum micro- and nanoelectronics in general. The main field emission properties, and some most remarkable experimental facts and applications, are described in this book.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 12.81MB
Andere Kunden interessierten sich auch für
- Materials Fundamentals of Gate Dielectrics (eBook, PDF)113,95 €
- Symmetries in Science XI (eBook, PDF)161,95 €
- Benjamin SeznecTheoretical Treatment of Electron Emission and Related Phenomena (eBook, PDF)113,95 €
- -31%11Ettore Majorana (eBook, PDF)73,95 €
- -75%11Beatrice Marie EllerhoffCalculating with quanta (eBook, PDF)3,99 €
- Metin TolanShaken, Not Stirred! (eBook, PDF)20,95 €
- Jean-Louis BasdevantVariational Principles in Physics (eBook, PDF)57,95 €
-
-
-
Field emission is a phenomenon described by quantum mechanics. Its emission capability is millions times higher than that of any other known types of electron emission. Nowadays this phenomenon is experiencing a new life due to wonderful applications in the atomic resolution microscopy, in electronic holography, and in the vacuum micro- and nanoelectronics in general. The main field emission properties, and some most remarkable experimental facts and applications, are described in this book.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 205
- Erscheinungstermin: 24. Dezember 2007
- Englisch
- ISBN-13: 9780387274195
- Artikelnr.: 37286390
- Verlag: Springer US
- Seitenzahl: 205
- Erscheinungstermin: 24. Dezember 2007
- Englisch
- ISBN-13: 9780387274195
- Artikelnr.: 37286390
George N. Fursey, Surface Physics and Electronic Research Center, St. Petersburg, Russia
Foreword. Historical Overview.
1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume.
2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume.
3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume.
4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume.
5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume.
6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume.
7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume.
8: Advance in Applications. 8.1. Introduction. 8.2. Short Historical Review and Main stages. 8.3. Field emission microscopy. 8.4. Field emission displays. 8.5. Other Applications of Field Emission. 8.6. Arrays of Carbon Nanoclusters. 8.7. Resume.
References. Figure Captions. List of Main Notation.
1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume.
2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume.
3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume.
4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume.
5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume.
6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume.
7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume.
8: Advance in Applications. 8.1. Introduction. 8.2. Short Historical Review and Main stages. 8.3. Field emission microscopy. 8.4. Field emission displays. 8.5. Other Applications of Field Emission. 8.6. Arrays of Carbon Nanoclusters. 8.7. Resume.
References. Figure Captions. List of Main Notation.
Foreword. Historical Overview.
1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume.
2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume.
3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume.
4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume.
5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume.
6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume.
7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume.
8: Advance in Applications. 8.1. Introduction. 8.2. Short Historical Review and Main stages. 8.3. Field emission microscopy. 8.4. Field emission displays. 8.5. Other Applications of Field Emission. 8.6. Arrays of Carbon Nanoclusters. 8.7. Resume.
References. Figure Captions. List of Main Notation.
1: Field emission from metals. 1.1. Fowler-Nordheim theory. 1.2. Thermal-field emission. 1.3. Elaboration theory of the field emission theory from metals. 1.4. Resume.
2: Characteristic features of field emission in very high electric fields and high current densities. 2.1. Deviations from the Fowler-Nordheim theory in very high electric fields. 2.2. Space charge influence on field emission. 2.3. Influence of space charge of relativity electrons on field emission. 2.4. About the potential barrier shape in strong electric fields. 2.5. Resume.
3: Maximum obtainable field emission current densities. 3.1. Theoretical limit of field emission current. 3.2. Effects preceding field emitter explosion. 3.3. Heating as the cause of field emission cathode instabilities. 3.5. Highest field emission current densities achieved experimentally. 3.6. Resume.
4: Field emission in a microwave field. 4.1. Introduction. 4.2. The condition of adiabaticity - tunneling time. 4.3. Experimental verification of the validity of fn theory in a microwave field. 4.4. Maximum field emission current densities for a microwave field. 4.5. Elimination of the ion bombardment. 4.6. Transit time in a microwave field diode with field emission cathode. Energy spectra of electrons. 4.7. Field emission from a liquid surface in a microwave field. 4.8. Resume.
5: Field emission from semiconductors. 5.1. Introduction. 5.2. Cleaning the emitter surface and obtaining field-emission patterns. 5.3. Experimental field emission current-voltage characteristics. 5.4. On preserving the initial surface properties of a field emitter. 5.5. Voltage drop across the sample and the field distribution in the emitting tip area. 5.6. Theory of the field electron emission from semiconductors. 5.7. Transition processes in field emission from semiconductors. 5.8. Stable semiconductor field emission cathode. 5.9. Some experiments on adsorption. 5.10. Resume.
6: Statistical processes in field electron emission. 6.1. Formulation of the problem. 6.2. Method of investigation. 6.3. Statistics of field emission from metals. 6.4. Investigation of field emission statistics at cryogenic temperatures. 6.5. Multi-electron field emission from high temperature superconductors ceramics. 6.6. Investigations of field emission statistics for highly transparent barriers. 6.7. Resume.
7: The use of point field-emission cathodes in electron-optical systems: field emission localization to small solid angles. 7.1. Introduction. 7.2. The optimum crystallographic orientation of the field emission cathode. 7.3. Field emission localization by thermal-field surface self diffusion. 7.4. Field emission localization due to a local decrease of work function by selective adsorption. 7.5. Field emission from atomically sharp protuberances. 7.6. Some applications of field-emission cathodes in electron-optical devices. 7.7. Resume.
8: Advance in Applications. 8.1. Introduction. 8.2. Short Historical Review and Main stages. 8.3. Field emission microscopy. 8.4. Field emission displays. 8.5. Other Applications of Field Emission. 8.6. Arrays of Carbon Nanoclusters. 8.7. Resume.
References. Figure Captions. List of Main Notation.