Financial Signal Processing and Machine Learning (eBook, ePUB)
Redaktion: Akansu, Ali N.; Malioutov, Dmitry M.; Kulkarni, Sanjeev R.
Alle Infos zum eBook verschenken
Financial Signal Processing and Machine Learning (eBook, ePUB)
Redaktion: Akansu, Ali N.; Malioutov, Dmitry M.; Kulkarni, Sanjeev R.
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 34.09MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Seitenzahl: 312
- Erscheinungstermin: 21. April 2016
- Englisch
- ISBN-13: 9781118745632
- Artikelnr.: 44957764
- Verlag: Jossey-Bass
- Seitenzahl: 312
- Erscheinungstermin: 21. April 2016
- Englisch
- ISBN-13: 9781118745632
- Artikelnr.: 44957764
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
-SVMs as CVaR Minimizations 247 10.3.1
-SVMs as CVaR Minimizations with Homogeneous Loss 247 10.3.2
-SVMs as CVaR Minimizations with Nonhomogeneous Loss 251 10.3.3 Refining the
-Property 253 10.4 Duality 256 10.4.1 Binary Classification 256 10.4.2 Geometric Interpretation of
-SVM 257 10.4.3 Geometric Interpretation of the Range of
for
-SVC 258 10.4.4 Regression 259 10.4.5 One-class Classification and SVDD 259 10.5 Extensions to Robust Optimization Modelings 259 10.5.1 Distributionally Robust Formulation 259 10.5.2 Measurement-wise Robust Formulation 261 10.6 Literature Review 262 10.6.1 CVaR as a Risk Measure 263 10.6.2 From CVaR Minimization to SVM 263 10.6.3 From SVM to CVaR Minimization 263 10.6.4 Beyond CVaR 263 References 264 11 Regression Models in Risk Management 266 Stan Uryasev 11.1 Introduction 267 11.2 Error and Deviation Measures 268 11.3 Risk Envelopes and Risk Identifiers 271 11.3.1 Examples of Deviation Measures D, Corresponding Risk Envelopes Q, and Sets of Risk Identifiers QD(X) 272 11.4 Error Decomposition in Regression 273 11.5 Least-Squares Linear Regression 275 11.6 Median Regression 277 11.7 Quantile Regression and Mixed Quantile Regression 281 11.8 Special Types of Linear Regression 283 11.9 Robust Regression 284 References, Further Reading, and Bibliography 287 Index 289
-SVMs as CVaR Minimizations 247 10.3.1
-SVMs as CVaR Minimizations with Homogeneous Loss 247 10.3.2
-SVMs as CVaR Minimizations with Nonhomogeneous Loss 251 10.3.3 Refining the
-Property 253 10.4 Duality 256 10.4.1 Binary Classification 256 10.4.2 Geometric Interpretation of
-SVM 257 10.4.3 Geometric Interpretation of the Range of
for
-SVC 258 10.4.4 Regression 259 10.4.5 One-class Classification and SVDD 259 10.5 Extensions to Robust Optimization Modelings 259 10.5.1 Distributionally Robust Formulation 259 10.5.2 Measurement-wise Robust Formulation 261 10.6 Literature Review 262 10.6.1 CVaR as a Risk Measure 263 10.6.2 From CVaR Minimization to SVM 263 10.6.3 From SVM to CVaR Minimization 263 10.6.4 Beyond CVaR 263 References 264 11 Regression Models in Risk Management 266 Stan Uryasev 11.1 Introduction 267 11.2 Error and Deviation Measures 268 11.3 Risk Envelopes and Risk Identifiers 271 11.3.1 Examples of Deviation Measures D, Corresponding Risk Envelopes Q, and Sets of Risk Identifiers QD(X) 272 11.4 Error Decomposition in Regression 273 11.5 Least-Squares Linear Regression 275 11.6 Median Regression 277 11.7 Quantile Regression and Mixed Quantile Regression 281 11.8 Special Types of Linear Regression 283 11.9 Robust Regression 284 References, Further Reading, and Bibliography 287 Index 289