-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
21 °P sammeln
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
21 °P sammeln
Als Download kaufen
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
21 °P sammeln
Jetzt verschenken
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
21 °P sammeln
  • Format: PDF

Dieses zweibändige Werk führt systematisch in die Finite-Elemente-Methode für die Kontinuumsmechanik ein. Es geht damit weit über das traditionelle Anwendungsgebiet innerhalb der Strukturmechanik hinaus und zeigt auf, wie Probleme innerhalb der Elasto-, Plasto- und Kriechmechanik, der Fluidmechanik, der Wärmeübertragung und der Elektrotechnik numerisch gelöst werden können, die analytisch nicht oder nur unbefriedigend behandelbar sind.
Im ersten Band gibt der Autor einen leicht verständlichen Einstieg in die Methode. Die 2. Auflage stellt eine wesentliche Erweiterung dar, in der auch
…mehr

Produktbeschreibung
Dieses zweibändige Werk führt systematisch in die Finite-Elemente-Methode für die Kontinuumsmechanik ein. Es geht damit weit über das traditionelle Anwendungsgebiet innerhalb der Strukturmechanik hinaus und zeigt auf, wie Probleme innerhalb der Elasto-, Plasto- und Kriechmechanik, der Fluidmechanik, der Wärmeübertragung und der Elektrotechnik numerisch gelöst werden können, die analytisch nicht oder nur unbefriedigend behandelbar sind.

Im ersten Band gibt der Autor einen leicht verständlichen Einstieg in die Methode. Die 2. Auflage stellt eine wesentliche Erweiterung dar, in der auch räumliche Probleme ausführlich behandelt werden.

Das Buch enthält eine Vielzahl von Übungsaufgaben aus unterschiedlichen Fachgebieten mit vollständig ausgearbeiteten und diskutierten Lösungen. Zum Einsatz kommt Maple8. Die beigefügte CD-ROM enthält die im Textteil und in den Übungen entwickelten Programme, die der Anwender für die eigenen Bedürfnisse abändern kann.

Angesprochen werden Studierende der Ingenieurwissenschaften, der Informatik, Mathematik und Physik. In der Praxis tätige Ingenieure finden Anregungen beim Aufstellen eigener Finite-Elemente-Programme.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
1958 bis 1964 Studium des Maschinenbaus an der Technischen Hochschule Aachen und anschließend Industrietätigkeit bei der Rheinischen Walzmaschinenfabrik. 1968 bis 1970 wissenschaftlicher Mitarbeiter und Assistent an der RWTH Aachen. 1968 Promotion und Verleihung der BOCHERS-Plakette. 1970 Lehrauftrag in "Mathematische Modelle in der Werkstoffkunde". 1971 Habilitation und anschließende Lehrtätigkeit an der Fakultät für Maschinenwesen der RWTH Aachen. 1980 Professor für Mechanik an der TU Graz. Seit 1981 Professor an der RWTH Aachen.

Arbeitsgebiete: Tensorrechnung, Kontinuumsmechanik (Elasto-, Plasto- und Kriechmechanik), Viskoelastizitäts- und Viskoplastizitätstheorie, Rheologie, Materialtheorie, Numerische Mechanik und Mathematik.

Autor mehrerer Bücher und mehr als 180 Veröffentlichungen in internationalen Fachzeitschriften.

Rezensionen
"Das Buch (Bd. 1 und 2) ist als Einführung in die Methode der Finiten Elemente zu sehen. Es ist vor allem Studierenden als Begleitbuch zur FE-Vorlesung und zur Prüfungsvorbereitung sehr zu empfehlen, da es die wichtigsten Elementformulierungen und Lösungsverfahren enthält. Zudem besteht die zweite Hälfte sowohl von Teil 1 als auch von Teil 2 aus vollständig gelösten Beispielen unterschiedlicher Schwierigkeit, womit sich das Buch auch für einen in der Praxis tätigen Ingenieur eignet, der sich entweder in die gesamte Thematik einarbeiten oder einzelne Teilgebiete auffrischen möchte."

(ZAMM, Z. Angew. Math. Mech. 80 (2000))