139,99 €
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
139,99 €
139,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
139,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

This book aims to promote regression methods for analyzing lifetime (or time-to-event) data that are based on a representation of the underlying process, and are therefore likely to offer greater scientific insight compared to purely empirical methods. In contrast to the rich statistical literature, the regression methods actually employed in lifetime data analysis are limited, particularly in the biomedical field where D. R. Cox s famous semi-parametric proportional hazards model predominates. Practitioners should become familiar with more flexible models. The first hitting time regression…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 5.61MB
Produktbeschreibung
This book aims to promote regression methods for analyzing lifetime (or time-to-event) data that are based on a representation of the underlying process, and are therefore likely to offer greater scientific insight compared to purely empirical methods. In contrast to the rich statistical literature, the regression methods actually employed in lifetime data analysis are limited, particularly in the biomedical field where D. R. Cox s famous semi-parametric proportional hazards model predominates. Practitioners should become familiar with more flexible models. The first hitting time regression models (or threshold regression) presented here represent observed events as the outcome of an underlying stochastic process. One example is death occurring when the patient s health status falls to zero, but the idea has wide applicability in biology, engineering, banking and finance, and elsewhere. The central topic is the model based on an underlying Wiener process, leading to lifetimes following the inverse Gaussian distribution. Introducing time-varying covariates and many other extensions are considered. Various applications are presented in detail.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Chrysseis Caroni, National Technical University of Athens, Greece.