113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
Als Download kaufen
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
57 °P sammeln
Jetzt verschenken
113,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
57 °P sammeln
  • Format: PDF

This book addresses the pressing challenges faced by renewable power system operation (RPSO) due to the increasing penetration of renewable energy and flexible load. These challenges can be divided into two categories. Firstly, the inherent uncertainties associated with renewable energy sources pose significant difficulties in RPSO. Secondly, the presence of various types of flexible load, along with their complex constraint relationships, adds to the operational complexities. Recognizing the growing emphasis on the economic and low-carbon aspects of RPSO, this book focuses on the key issues…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 10.29MB
Produktbeschreibung
This book addresses the pressing challenges faced by renewable power system operation (RPSO) due to the increasing penetration of renewable energy and flexible load. These challenges can be divided into two categories. Firstly, the inherent uncertainties associated with renewable energy sources pose significant difficulties in RPSO. Secondly, the presence of various types of flexible load, along with their complex constraint relationships, adds to the operational complexities. Recognizing the growing emphasis on the economic and low-carbon aspects of RPSO, this book focuses on the key issues of flexible load control. It mainly consists of following categories: (1) The control of data centers, a booming flexible load, to enhance RPSO through renewable energy integration and advanced robust multi-objective optimization. (2) The introduction of flexible industrial load control, employing effective demand-supply cooperative responding strategies for RPSO. (3) The exploration of electric vehicle flexible charging load control and centralized electric vehicle charging system control in the context of RPSO. The book also covers the emerging field of flexible integrated load control for renewable energy-based comprehensive energy system operation. Aimed at researchers, engineers, and graduate students in electrical engineering and computer science, this book provides a valuable resource for understanding and implementing flexible load control in the context of RPSO.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Yuanzheng Li is currently an associate professor in the School of Artificial Intelligence and Automation at Huazhong University of Science and Technology. His main research fields are artificial intelligence and its application in smart grid, deep learning, reinforcement learning, big data analysis, operation research optimization, etc. He has investigated 2 projects of the National Natural Science Foundation of China, 2 Science and Technology projects of the State Grid of China Corporation, and participated in the National Key Basic Research and Development Plan (973 Plan). Among them, the research results were selected as excellent achievements of the State Key Laboratory of Renewable Energy Power System and research innovation points of the 973 program. He has published more than 50 journal papers, including 16 first-author IEEE Transactions. Currently, he is the associate editor of IEEE Transactions on Intelligent Vehicles and the editorial board of IET Renewable Power Generation.

Dr. Yang Li is a professor at the Northeast Electric Power University, China. He received his Ph.D. degree in Electrical Engineering from North China Electric Power University (NCEPU), China, in 2014. He is a professor at the School of Electrical Engineering, Northeast Electric Power University, Jilin, China. From Jan. 2017 to Feb. 2019, he was a postdoc with Argonne National Laboratory, Lemont, USA. He has published more than 50 academic papers, including 6 ESI highly cited papers. His research interests include power systems, integrated energy systems, and renewable energy. He serves as an associate editor for the journals of IEEE Transactions on Industry Applications, IET Renewable Power Generation and Scientific Reports.

Dr. Zeng Zhigang is the dean of School of Artificial Intelligence and Automation at Huazhong University of Science and Technology, National Science Fund for Distinguished Young Scholars, distinguished professor of Changjiang Scholars of the Ministry of Education, and director of Key Laboratory of Image Information Processing and Intelligent Control of the Ministry of Education. In June 2003, he received a doctor's degree in system analysis and integration from Huazhong University of Science and Technology. He has been engaged in postdoctoral research at the Chinese University of Hong Kong and the University of Science and Technology of China. He has also visited the University of Western Sydney in Australia and the Qatar branch of Texas A&M University in the USA. He is mainly engaged in modeling, analysis, control, and applications of complex systems. Professor Zeng has published more than 100 academic papers included in SCI.