Fluid-Structure Interaction (eBook, PDF)
Numerical Simulation Techniques for Naval Applications
Alle Infos zum eBook verschenken
Fluid-Structure Interaction (eBook, PDF)
Numerical Simulation Techniques for Naval Applications
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides a comprehensive overview of the numerical simulation of fluid-structure interaction (FSI) for application in marine engineering. Fluid-Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 29.84MB
- Instability in Models Connected with Fluid Flows II (eBook, PDF)113,95 €
- High Performance Computing in Fluid Dynamics (eBook, PDF)40,95 €
- Fluid Mechanics at Interfaces 2 (eBook, PDF)139,99 €
- Ping HuangNumerical Calculation of Elastohydrodynamic Lubrication (eBook, PDF)128,99 €
- Rainald LöhnerApplied Computational Fluid Dynamics Techniques (eBook, PDF)116,99 €
- Fluid Mechanics at Interfaces 1 (eBook, PDF)139,99 €
- IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering (eBook, PDF)113,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 400
- Erscheinungstermin: 18. November 2022
- Englisch
- ISBN-13: 9781394188208
- Artikelnr.: 66679579
- Verlag: Wiley
- Seitenzahl: 400
- Erscheinungstermin: 18. November 2022
- Englisch
- ISBN-13: 9781394188208
- Artikelnr.: 66679579
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Stokes equations 173 6.5 Applications 178 6.5.1 Dynamic behavior of RNR-Na cores 178 6.5.2 Onboard steam generator 181 6.6 Conclusion 183 6.7 References 183 Chapter 7 Calculating Turbulent Pressure Spectra 185 Myriam SLAMA 7.1 Vibrations caused by turbulent flow 185 7.2 Characteristics of the wall pressure spectrum 188 7.2.1 Turbulent boundary layer without a pressure gradient 188 7.2.2 Flow with a pressure gradient 193 7.3 Empirical models 194 7.3.1 Corcos model 194 7.3.2 Chase models 195 7.3.3 Smol'yakov model 197 7.3.4 Goody's model 199 7.3.5 Rozenberg model 199 7.3.6 Model comparison 200 7.4 Solving the Poisson equation for wall pressure fluctuations 203 7.4.1 Formulations for the TMS part of the wall pressure 203 7.4.2 Formulations for the TMS and TT parts of the wall pressure 206 7.5 Conclusion 211 7.6 References 211 Chapter 8 Calculating Fluid-Structure Interactions Using Co-simulation Techniques 215 Laëtitia PERNOD 8.1 Introduction 215 8.2 The physics of fluid-structure interaction 219 8.2.1 Dimensionless numbers for the fluid flow 222 8.2.2 Dimensionless numbers for the motion of structures 223 8.2.3 Dimensionless numbers linked to fluid-structure coupling 224 8.2.4 Additional dimensionless numbers and the generic effects of a fluid on a structure 225 8.2.5 Summary of dimensionless numbers and fluid-structure coupling intensity 226 8.3 Mathematical formulation of the fluid-structure interaction 228 8.3.1 Mathematical formulation of the fluid problem 230 8.3.2 Mathematical formulation of the structural problem 231 8.3.3 Mathematical formulation of interface coupling conditions 232 8.4 Numerical methods in the dynamics of fluids and structures 232 8.4.1 Numerical methods in the dynamics of fluids 232 8.4.2 Numerical methods in structural dynamics 234 8.4.3 Arbitrary Lagrange
Euler (ALE) formulation and moving meshes 234 8.5 Numerical solution of the fluid-structure interaction 236 8.5.1 Software strategy 237 8.5.2. Time coupling methods in the case of partitioning approaches .. 240 8.5.3 Methods of space coupling 245 8.5.4 The added mass effect 251 8.6 Examples of applications to naval hydrodynamics 254 8.6.1 Foils in composite materials 254 8.6.2 Hydrodynamics of hulls 255 8.7 Conclusion: Which method for which physics? 256 8.8 References 257 Chapter 9 The Seakeeping of Ships 261 Jean-Jacques MAISONNEUVE 9.1 Why predict ships' seakeeping ability? 261 9.1.1 Guaranteeing structural reliability 262 9.1.2 Guaranteeing a ship's safety at sea 262 9.1.3 Predicting operability domains 264 9.1.4 Improving operability 264 9.1.5. Getting to know the environment and how the ship disrupts it 265 9.1.6 The particular case of multibodies 266 9.1.7 Knowing average or low-frequency forces resulting from swell 266 9.2 Waves 267 9.2.1 Origin, nature and description of waves 267 9.2.2 Monochromatic swell 269 9.2.3 Irregular swell 271 9.2.4 Complete nonlinear wave modeling 272 9.2.5 Considering a ship's forward speed 272 9.3 The hydromechanical linear frequency solution 273 9.3.1 Hypotheses and general formulation 273 9.3.2 Response on regular swell 275 9.3.3 Response on irregular swell 284 9.4 Nonlinear time solution based on force models 286 9.4.1 Principles of the method 287 9.4.2 Results 290 9.4.3 Tools: uses and limitations 291 9.5 Complete solution of the Navier
Stokes equations 291 9.5.1 Method 292 9.5.2 Applications to the problem of seakeeping 294 9.6 Conclusion 298 9.7 References 298 Chapter 10 Modeling the Effects of Underwater Explosions on Submerged Structures 301 Quentin RAKOTOMALALA 10.1 Underwater explosions 302 10.1.1 Characterizing the threat 302 10.1.2 Calculating the flow 305 10.1.3 Semi-analytical models for the response of submerged structures 307 10.2 Semi-analytical models for the motion of a rigid hull 308 10.2.1 Local motion of a rigid hull with or without equipment 308 10.2.2 Overall motion of a rigid hull with or without equipment 312 10.3 Semi-analytical models of the motion of a deformable hull 319 10.3.1 Shock signal on a deformable hull alone 319 10.3.2 Correction of the rigid body motion 322 10.3.3 Device rigidly mounted on the hull 327 10.3.4 Simplified representation of hull stiffeners 331 10.4 Notes on implementing models 334 10.5 Conclusion 337 10.6 References 337 Chapter 11 Resistance of Composite Structures Under Extreme Hydrodynamic Loads 339 Pierre BERTHELOT, Kevin BROCHARD, Alexis BLOCH and Jean-Christophe PETITEAU 11.1 The behavior of composite materials 340 11.1.1 Orthotropic linear elastic behavior 340 11.1.2 Non-elastic behavior 341 11.1.3 Strain rate dependency 344 11.2 Underwater explosions 345 11.2.1 Categorizing phenomena 346 11.2.2 Analytical formulations and simple experiments 348 11.2.3 Numerical methods 354 11.3 Slamming: phenomenon and formulation 362 11.4 Conclusion 365 11.5 References 365 List of Authors 369 Index 371
Stokes equations 173 6.5 Applications 178 6.5.1 Dynamic behavior of RNR-Na cores 178 6.5.2 Onboard steam generator 181 6.6 Conclusion 183 6.7 References 183 Chapter 7 Calculating Turbulent Pressure Spectra 185 Myriam SLAMA 7.1 Vibrations caused by turbulent flow 185 7.2 Characteristics of the wall pressure spectrum 188 7.2.1 Turbulent boundary layer without a pressure gradient 188 7.2.2 Flow with a pressure gradient 193 7.3 Empirical models 194 7.3.1 Corcos model 194 7.3.2 Chase models 195 7.3.3 Smol'yakov model 197 7.3.4 Goody's model 199 7.3.5 Rozenberg model 199 7.3.6 Model comparison 200 7.4 Solving the Poisson equation for wall pressure fluctuations 203 7.4.1 Formulations for the TMS part of the wall pressure 203 7.4.2 Formulations for the TMS and TT parts of the wall pressure 206 7.5 Conclusion 211 7.6 References 211 Chapter 8 Calculating Fluid-Structure Interactions Using Co-simulation Techniques 215 Laëtitia PERNOD 8.1 Introduction 215 8.2 The physics of fluid-structure interaction 219 8.2.1 Dimensionless numbers for the fluid flow 222 8.2.2 Dimensionless numbers for the motion of structures 223 8.2.3 Dimensionless numbers linked to fluid-structure coupling 224 8.2.4 Additional dimensionless numbers and the generic effects of a fluid on a structure 225 8.2.5 Summary of dimensionless numbers and fluid-structure coupling intensity 226 8.3 Mathematical formulation of the fluid-structure interaction 228 8.3.1 Mathematical formulation of the fluid problem 230 8.3.2 Mathematical formulation of the structural problem 231 8.3.3 Mathematical formulation of interface coupling conditions 232 8.4 Numerical methods in the dynamics of fluids and structures 232 8.4.1 Numerical methods in the dynamics of fluids 232 8.4.2 Numerical methods in structural dynamics 234 8.4.3 Arbitrary Lagrange
Euler (ALE) formulation and moving meshes 234 8.5 Numerical solution of the fluid-structure interaction 236 8.5.1 Software strategy 237 8.5.2. Time coupling methods in the case of partitioning approaches .. 240 8.5.3 Methods of space coupling 245 8.5.4 The added mass effect 251 8.6 Examples of applications to naval hydrodynamics 254 8.6.1 Foils in composite materials 254 8.6.2 Hydrodynamics of hulls 255 8.7 Conclusion: Which method for which physics? 256 8.8 References 257 Chapter 9 The Seakeeping of Ships 261 Jean-Jacques MAISONNEUVE 9.1 Why predict ships' seakeeping ability? 261 9.1.1 Guaranteeing structural reliability 262 9.1.2 Guaranteeing a ship's safety at sea 262 9.1.3 Predicting operability domains 264 9.1.4 Improving operability 264 9.1.5. Getting to know the environment and how the ship disrupts it 265 9.1.6 The particular case of multibodies 266 9.1.7 Knowing average or low-frequency forces resulting from swell 266 9.2 Waves 267 9.2.1 Origin, nature and description of waves 267 9.2.2 Monochromatic swell 269 9.2.3 Irregular swell 271 9.2.4 Complete nonlinear wave modeling 272 9.2.5 Considering a ship's forward speed 272 9.3 The hydromechanical linear frequency solution 273 9.3.1 Hypotheses and general formulation 273 9.3.2 Response on regular swell 275 9.3.3 Response on irregular swell 284 9.4 Nonlinear time solution based on force models 286 9.4.1 Principles of the method 287 9.4.2 Results 290 9.4.3 Tools: uses and limitations 291 9.5 Complete solution of the Navier
Stokes equations 291 9.5.1 Method 292 9.5.2 Applications to the problem of seakeeping 294 9.6 Conclusion 298 9.7 References 298 Chapter 10 Modeling the Effects of Underwater Explosions on Submerged Structures 301 Quentin RAKOTOMALALA 10.1 Underwater explosions 302 10.1.1 Characterizing the threat 302 10.1.2 Calculating the flow 305 10.1.3 Semi-analytical models for the response of submerged structures 307 10.2 Semi-analytical models for the motion of a rigid hull 308 10.2.1 Local motion of a rigid hull with or without equipment 308 10.2.2 Overall motion of a rigid hull with or without equipment 312 10.3 Semi-analytical models of the motion of a deformable hull 319 10.3.1 Shock signal on a deformable hull alone 319 10.3.2 Correction of the rigid body motion 322 10.3.3 Device rigidly mounted on the hull 327 10.3.4 Simplified representation of hull stiffeners 331 10.4 Notes on implementing models 334 10.5 Conclusion 337 10.6 References 337 Chapter 11 Resistance of Composite Structures Under Extreme Hydrodynamic Loads 339 Pierre BERTHELOT, Kevin BROCHARD, Alexis BLOCH and Jean-Christophe PETITEAU 11.1 The behavior of composite materials 340 11.1.1 Orthotropic linear elastic behavior 340 11.1.2 Non-elastic behavior 341 11.1.3 Strain rate dependency 344 11.2 Underwater explosions 345 11.2.1 Categorizing phenomena 346 11.2.2 Analytical formulations and simple experiments 348 11.2.3 Numerical methods 354 11.3 Slamming: phenomenon and formulation 362 11.4 Conclusion 365 11.5 References 365 List of Authors 369 Index 371