61,95 €
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
31 °P sammeln
61,95 €
61,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
31 °P sammeln
Als Download kaufen
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
31 °P sammeln
Jetzt verschenken
61,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
31 °P sammeln
  • Format: PDF

Forest Analytics with R combines practical, down-to-earth forestry data analysis and solutions to real forest management challenges with state-of-the-art statistical and data-handling functionality. The authors adopt a problem-driven approach, in which statistical and mathematical tools are introduced in the context of the forestry problem that they can help to resolve. All the tools are introduced in the context of real forestry datasets, which provide compelling examples of practical applications. The modeling challenges covered within the book include imputation and interpolation for…mehr

Produktbeschreibung
Forest Analytics with R combines practical, down-to-earth forestry data analysis and solutions to real forest management challenges with state-of-the-art statistical and data-handling functionality. The authors adopt a problem-driven approach, in which statistical and mathematical tools are introduced in the context of the forestry problem that they can help to resolve. All the tools are introduced in the context of real forestry datasets, which provide compelling examples of practical applications. The modeling challenges covered within the book include imputation and interpolation for spatial data, fitting probability density functions to tree measurement data using maximum likelihood, fitting allometric functions using both linear and non-linear least-squares regression, and fitting growth models using both linear and non-linear mixed-effects modeling. The coverage also includes deploying and using forest growth models written in compiled languages, analysis of natural resources and forestry inventory data, and forest estate planning and optimization using linear programming. The book would be ideal for a one-semester class in forest biometrics or applied statistics for natural resources management. The text assumes no programming background, some introductory statistics, and very basic applied mathematics. Andrew Robinson has been associate professor of forest mensuration and forest biometrics at the University of Idaho, and is currently senior lecturer in applied statistics at the University of Melbourne. He received his PhD in forestry from the University of Minnesota. Robinson is author of the popular and freely-available "icebreakeR" document. Jeff Hamann has been a software developer, forester, and financial analyst. He is currently a consultant specializing in forestry, operations research, and geographic information sciences. He received his PhD in forestry from Oregon State University. Both authors have presented numerous R workshops to forestry professionals and scientists, and others.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Andrew Robinson has been associate professor of forest mensuration and forest biometrics at the University of Idaho, and is currently senior lecturer in applied statistics at the University of Melbourne. He received his PhD in forestry from the University of Minnesota. Robinson is author of the popular and freely-available "icebreakeR" document. Jeff Hamann has been a software developer, forester, and financial analyst. He is currently a consultant specializing in forestry, operations research, and geographic information sciences. He received his PhD in forestry from Oregon State University. Both authors have presented numerous R workshops to forestry professionals and scientists, and others.
Rezensionen
From the reviews:

"The material presented in this text is more than sufficient for a dedicated module of an applied statistics course ... . The authors develop, and demonstrate, solutions to common forestry data handling and analysis challenges ... . Whilst much of the text may be regarded as standard for the topic, the last chapter addresses an area harvest strategy which is well worth reading on its own ... . The text is well written, easy to read and I recommend it to anyone interested in biometrics." (Carl M. O'Brien, International Statistical Review, Vol. 80 (1), 2012)