-20%11
119,99 €
149,99 €**
119,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
payback
60 °P sammeln
-20%11
119,99 €
149,99 €**
119,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
60 °P sammeln
Als Download kaufen
149,99 €****
-20%11
119,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
payback
60 °P sammeln
Jetzt verschenken
149,99 €****
-20%11
119,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
60 °P sammeln
  • Format: PDF

Dieses Buch präsentiert Fortschritte in der biomedizinischen Technologie. IoT und Machine Learning haben neue Ansätze im mobilen Gesundheitswesen ermöglicht, mit Fokus auf kontinuierlicher Überwachung kritischer Gesundheitssituationen. Intelligente Hybridisierung von IoT, drahtlosen Implantaten und Cloud-Computing wird derzeit von verschiedenen Einrichtungen entwickelt und getestet. Biomedizinische Signale und Bildmodalitäten werden nicht-invasiv erfasst und erfordern eine mehrkanalige Erfassung für wirksame Überwachung. Automatisierte Gesundheitssysteme basieren auf Signal- und Bildaufnahme,…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 10.32MB
Produktbeschreibung
Dieses Buch präsentiert Fortschritte in der biomedizinischen Technologie. IoT und Machine Learning haben neue Ansätze im mobilen Gesundheitswesen ermöglicht, mit Fokus auf kontinuierlicher Überwachung kritischer Gesundheitssituationen. Intelligente Hybridisierung von IoT, drahtlosen Implantaten und Cloud-Computing wird derzeit von verschiedenen Einrichtungen entwickelt und getestet. Biomedizinische Signale und Bildmodalitäten werden nicht-invasiv erfasst und erfordern eine mehrkanalige Erfassung für wirksame Überwachung. Automatisierte Gesundheitssysteme basieren auf Signal- und Bildaufnahme, Vorverarbeitung, Merkmalsextraktion und Klassifikation. Das Buch beschreibt zeitgenössische Ansätze in der biomedizinischen Signalerfassung und -verarbeitung mit maschinellem und tiefem Lernen. Jedes Kapitel ist eigenständig und bietet eine umfassende Übersicht über Theorien, Algorithmen und Herausforderungen im Bereich moderner Gesundheitssysteme. Die Übersetzung wurde mit Hilfe von künstlicher Intelligenz durchgeführt. Eine anschließende menschliche Überarbeitung erfolgte vor allem in Bezug auf den Inhalt.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Saeed Mian Qaisar erlangte seinen M.S. und Ph.D. in Elektro- und Informationstechnik an der Universität Grenoble Alpes, Frankreich, 2005 bzw. 2009. Danach absolvierte er einen Postdoc-Aufenthalt an der Universität Bordeaux, Frankreich, und arbeitete in verschiedenen F&E-Positionen in Frankreich. Derzeit ist er Associate Professor und Forscher am Fachbereich Elektro- und Informationstechnik an der Effat University, Jeddah, Saudi-Arabien. Er wurde mit dem Queen Effat Award für hervorragende Lehre im Mai 2016 ausgezeichnet, besitzt zwei Patente und hat über 200 veröffentlichte Artikel in Fachzeitschriften, Buchkapiteln und Konferenzbeiträgen. Er ist Herausgeber mehrerer internationaler Zeitschriften und Mitglied technischer und Überprüfungskomitees mehrerer internationaler Zeitschriften und Konferenzen. Humaira Nisar hat einen B.Sc. (mit Auszeichnung) in Elektrotechnik von der University of Engineering and Technology, Lahore, Pakistan, einen M.Sc. in Kernenergie von der Quaid-i-Azam University, Islamabad, Pakistan, einen weiteren M.Sc. in Mechatronik und einen Ph.D. in Information und Mechatronik vom Gwangju Institute of Science and Technology, Gwangju, Südkorea. Mit über zwanzig Jahren Forschungserfahrung ist sie derzeit als Full Professor am Fachbereich Elektrotechnik an der Universiti Tunku Abdul Rahman, Kampar, Malaysia, tätig. Ihre Forschungsinteressen umfassen Signal- und Bildverarbeitung, biomedizinische Bildgebung, Neuro-Signalverarbeitung und -analyse, Brain-Computer Interface und Neurofeedback. Sie hat über 200 internationale Zeitschriften- und Konferenzartikel veröffentlicht und ist Senior-Mitglied der IEEE. Abdulhamit Subasi ist auf künstliche Intelligenz, maschinelles Lernen, biomedizinische Signal- und Bildanalyse spezialisiert. Er schrieb über 30 Buchkapitel und über 200 veröffentlichte Artikel in Zeitschriften und Konferenzen zu verschiedenen Anwendungen von maschinellem Lernen. Er ist auch Autor der Bücher "Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques" und "Practical Machine Learning for Data Analysis Using Python". Darüber hinaus ist er Herausgeber des Buches "Applications of Artificial Intelligence in Medical Imaging". Er arbeitete an verschiedenen Institutionen als Akademiker und am Georgia Institute of Technology, Georgia, USA, als Forscher. Im Mai 2018 wurde er mit dem Queen Effat Award für hervorragende Forschung ausgezeichnet. Zwischen 2015 und 2020 arbeitete er als Professor für Informatik an der Effat University, Jeddah, Saudi-Arabien. Seit 2020 ist er als Professor an der Medizinischen Fakultät der Universität Turku, Turku, Finnland, tätig.