Fractional Brownian Motion (eBook, ePUB)
Approximations and Projections
Alle Infos zum eBook verschenken
Fractional Brownian Motion (eBook, ePUB)
Approximations and Projections
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This monograph studies the relationships between fractional Brownian motion (fBm) and other processes of more simple form. In particular, this book solves the problem of the projection of fBm onto the space of Gaussian martingales that can be represented as Wiener integrals with respect to a Wiener process. It is proved that there exists a unique martingale closest to fBm in the uniform integral norm. Numerical results concerning the approximation problem are given. The upper bounds of distances from fBm to the different subspaces of Gaussian martingales are evaluated and the numerical…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 12.09MB
- Oksana BannaFractional Brownian Motion (eBook, PDF)139,99 €
- Yuliya MishuraTheory and Statistical Applications of Stochastic Processes (eBook, ePUB)139,99 €
- Patrick BillingsleyProbability and Measure (eBook, ePUB)124,99 €
- Amy S. WagamanProbability (eBook, ePUB)125,99 €
- Gennady SamoradnitskyStable Non-Gaussian Random Processes (eBook, ePUB)185,95 €
- Alvin C. RencherMethods of Multivariate Analysis (eBook, ePUB)124,99 €
- R. Darrell BockItem Response Theory (eBook, ePUB)109,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 288
- Erscheinungstermin: 10. April 2019
- Englisch
- ISBN-13: 9781119610335
- Artikelnr.: 56306745
- Verlag: John Wiley & Sons
- Seitenzahl: 288
- Erscheinungstermin: 10. April 2019
- Englisch
- ISBN-13: 9781119610335
- Artikelnr.: 56306745
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
(1/2,1) 17 1.7. Representation of the minimizing function 21 1.7.1. Auxiliary results 21 1.7.2. Main properties of the minimizing function 28 1.8. Approximation of a discrete-time fBm by martingales 31 1.8.1. Description of the discrete-time model 31 1.8.2. Iterative minimization of the squared distance using alternating minimization method 33 1.8.3. Implementation of the alternating minimization algorithm 43 1.8.4. Computation of the minimizing function 44 1.9. Exercises 50 Chapter 2. Distance Between fBm and Subclasses of Gaussian Martingales 53 2.1. fBm and Wiener integrals with power functions 54 2.1.1. fBm and Wiener integrals with constant integrands 54 2.1.2. fBm and Wiener integrals involving power integrands with a positive exponent 57 2.1.3. fBm and integrands a(s) with a(s)s
non-decreasing 65 2.1.4. fBm and Gaussian martingales involving power integrands with a negative exponent 67 2.1.5. fBm and the integrands a(s) = a0s
+ a1s
+1 80 2.1.6. fBm and Wiener integrals involving integrands k1 + k2s
84 2.2. The comparison of distances between fBm and subspaces of Gaussian martingales 109 2.2.1. Summary of the results concerning the values of the distances 109 2.2.2. The comparison of distances 112 2.2.3. The comparison of upper and lower bounds for the constant cH 113 2.3. Distance between fBm and class of "similar" functions 118 2.3.1. Lower bounds for the distance 121 2.3.2. Evaluation 124 2.4. Distance between fBm and Gaussian martingales in the integral norm 127 2.5. Distance between fBm with Mandelbrot-Van Ness kernel and Gaussian martingales 129 2.5.1. Constant function as an integrand 129 2.5.2. Power function as an integrand 131 2.5.3. Comparison of Molchan and Mandelbrot-Van Ness kernels 132 2.6. fBm with the Molchan kernel and H
(0,1/2), in relation to Gaussian martingales 133 2.7. Distance between the Wiener process and integrals with respect to fBm 138 2.7.1. Wiener integration with respect to fBm 138 2.7.2. Wiener process and integrals of power functions with respect to fBm 140 2.8. Exercises 150 Chapter 3. Approximation of fBm by Various Classes of Stochastic Processes 153 3.1. Approximation of fBm by uniformly convergent series of Lebesgue integrals 153 3.2. Approximation of fBm by semimartingales 157 3.2.1. Construction and convergence of approximations 157 3.2.2. Approximation of an integral with respect to fBm by integrals with respect to semimartingales 159 3.3. Approximation of fBm by absolutely continuous processes 164 3.4. Approximation of multifractional Brownian motion by absolutely continuous processes 171 3.4.1. Definition and examples 171 3.4.2. Hölder continuity 173 3.4.3. Construction and convergence of approximations 175 3.5. Exercises 180 Appendix 1. Auxiliary Results from Mathematical, Functional and Stochastic Analysis 181 Appendix 2. Evaluation of the Chebyshev Center of a Set of Points in the Euclidean Space 205 Appendix 3. Simulation of fBm 239 Solutions 251 References 257 Index 265
(1/2,1) 17 1.7. Representation of the minimizing function 21 1.7.1. Auxiliary results 21 1.7.2. Main properties of the minimizing function 28 1.8. Approximation of a discrete-time fBm by martingales 31 1.8.1. Description of the discrete-time model 31 1.8.2. Iterative minimization of the squared distance using alternating minimization method 33 1.8.3. Implementation of the alternating minimization algorithm 43 1.8.4. Computation of the minimizing function 44 1.9. Exercises 50 Chapter 2. Distance Between fBm and Subclasses of Gaussian Martingales 53 2.1. fBm and Wiener integrals with power functions 54 2.1.1. fBm and Wiener integrals with constant integrands 54 2.1.2. fBm and Wiener integrals involving power integrands with a positive exponent 57 2.1.3. fBm and integrands a(s) with a(s)s
non-decreasing 65 2.1.4. fBm and Gaussian martingales involving power integrands with a negative exponent 67 2.1.5. fBm and the integrands a(s) = a0s
+ a1s
+1 80 2.1.6. fBm and Wiener integrals involving integrands k1 + k2s
84 2.2. The comparison of distances between fBm and subspaces of Gaussian martingales 109 2.2.1. Summary of the results concerning the values of the distances 109 2.2.2. The comparison of distances 112 2.2.3. The comparison of upper and lower bounds for the constant cH 113 2.3. Distance between fBm and class of "similar" functions 118 2.3.1. Lower bounds for the distance 121 2.3.2. Evaluation 124 2.4. Distance between fBm and Gaussian martingales in the integral norm 127 2.5. Distance between fBm with Mandelbrot-Van Ness kernel and Gaussian martingales 129 2.5.1. Constant function as an integrand 129 2.5.2. Power function as an integrand 131 2.5.3. Comparison of Molchan and Mandelbrot-Van Ness kernels 132 2.6. fBm with the Molchan kernel and H
(0,1/2), in relation to Gaussian martingales 133 2.7. Distance between the Wiener process and integrals with respect to fBm 138 2.7.1. Wiener integration with respect to fBm 138 2.7.2. Wiener process and integrals of power functions with respect to fBm 140 2.8. Exercises 150 Chapter 3. Approximation of fBm by Various Classes of Stochastic Processes 153 3.1. Approximation of fBm by uniformly convergent series of Lebesgue integrals 153 3.2. Approximation of fBm by semimartingales 157 3.2.1. Construction and convergence of approximations 157 3.2.2. Approximation of an integral with respect to fBm by integrals with respect to semimartingales 159 3.3. Approximation of fBm by absolutely continuous processes 164 3.4. Approximation of multifractional Brownian motion by absolutely continuous processes 171 3.4.1. Definition and examples 171 3.4.2. Hölder continuity 173 3.4.3. Construction and convergence of approximations 175 3.5. Exercises 180 Appendix 1. Auxiliary Results from Mathematical, Functional and Stochastic Analysis 181 Appendix 2. Evaluation of the Chebyshev Center of a Set of Points in the Euclidean Space 205 Appendix 3. Simulation of fBm 239 Solutions 251 References 257 Index 265