Optical frequency measurement is an extremely challenging field of experimental physics that is presently undergoing a renaissance of interest and endeavour. The motivation for this rebirth comes from two diverse fronts: the very practical needs of modern high-throughput optical communication systems, and from the more esoteric requirements of high-resolution laser spectroscopy. The inherent challenge of the field arises from the desire for accuracy in the measurement. This requirement demands that the optical measurement be made with reference to the internationally agreed defintion of frequency: a microwave transition in the cesium atom. In the past, a small number of laboratories had succeeded in providing this bridge between the microwave and optical domains in an outstanding feat of ingenuity, overcoming the limits of technology. A much more elegant and simple approach has now become possible using developments in nonlinear optics and femtosecond mode-locked lasers. Application of this modern approach should lead to a new era in which optical frequency measurements become commonplace. This text is the first to discuss, in detail, the development of traditional and second-generation frequency chains together with their enabling technology. Reviews written by some of the most experienced researchers in their respective fields address the technology of frequency metrology, including low-noise and high-stability microwave and optical frequency standards, traditional and second-generation optical frequency measurement and synthesis techniques, and optical frequency comb generators. This text should prove useful to researchers just entering the field of optical frequency metrology or equally well to the experienced practitioner.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"FREQUENCY MEASUREMENT AND CONTROL is a valuable compilation of recent research results in the 'continued quest to improve the performance of oscillators.'...The book does a very good job of covering all the relevant issues involved in frequency locking, starting from materials sciences (the basics of frequency references), all the way to control theory (frequency locking, measurements, and synthesis). The authors skillfully guide the reader by suggesting background reading material, reviewing important research results and anticipating future developments that could be triggered, for example, by advances in materials science. Overall, the book is very well written and well suited to its target audience. It is a clear and well-organized reference, with a wealth of information and pointers to information." -- OPTICS & PHOTONICS NEWS