From Microstructure Investigations to Multiscale Modeling (eBook, PDF)
Bridging the Gap
Redaktion: Brancherie, Delphine; Ibrahimbegovic, Adnan; Bouvier, Salima; Feissel, Pierre
Alle Infos zum eBook verschenken
From Microstructure Investigations to Multiscale Modeling (eBook, PDF)
Bridging the Gap
Redaktion: Brancherie, Delphine; Ibrahimbegovic, Adnan; Bouvier, Salima; Feissel, Pierre
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Mechanical behaviors of materials are highly influenced by their architectures and/or microstructures. Hence, progress in material science involves understanding and modeling the link between the microstructure and the material behavior at different scales. This book gathers contributions from eminent researchers in the field of computational and experimental material modeling. It presents advanced experimental techniques to acquire the microstructure features together with dedicated numerical and analytical tools to take into account the randomness of the micro-structure.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 20.27MB
- Multiscale Modelling of Damage and Fracture Processes in Composite Materials (eBook, PDF)73,95 €
- From Microstructure Investigations to Multiscale Modeling (eBook, ePUB)139,99 €
- Mechanics of Unsaturated Geomaterials (eBook, PDF)160,99 €
- Bharat BhushanIntroduction to Tribology (eBook, PDF)123,99 €
- Tadeusz BurczynskiMultiscale Modelling and Optimisation of Materials and Structures (eBook, PDF)114,99 €
- Qingke ZhangInvestigations on Microstructure and Mechanical Properties of the Cu/Pb-free Solder Joint Interfaces (eBook, PDF)40,95 €
- T. X. YuIntroduction to Impact Dynamics (eBook, PDF)100,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley-IEEE Press
- Seitenzahl: 304
- Erscheinungstermin: 29. November 2017
- Englisch
- ISBN-13: 9781119484479
- Artikelnr.: 54242773
- Verlag: Wiley-IEEE Press
- Seitenzahl: 304
- Erscheinungstermin: 29. November 2017
- Englisch
- ISBN-13: 9781119484479
- Artikelnr.: 54242773
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
, Mijo NIKOLI
and Adnan IBRAHIMBEGOVI
4.1. Introduction 99 4.2. Meso-scale model 102 4.3. Macroscopic model response 106 4.3.1. Uniaxial tests 106 4.3.2. Failure surface 111 4.4. Conclusions 117 4.5. Acknowledgments 119 4.6. Bibliography 120 Chapter 5. Discrete Numerical Simulations of the Strength and Microstructure Evolution During Compaction of Layered Granular Solids 123 Bereket YOHANNES, Marcial GONZALEZ and Alberto M. CUITIÑO 5.1. Introduction 123 5.2. Numerical simulation 127 5.2.1. Discrete particle simulations of powder compaction 127 5.2.2. Discrete particle simulation of layered compacts 129 5.3. Discussion 131 5.4. Conclusion 137 5.5. Acknowledgements 137 5.6. Bibliography 137 Chapter 6. Microstructural Views of Stresses in Three-Phase Granular Materials 143 Jérôme DURIEZ, Richard WAN and Félix DARVE 6.1. Microstructural expression of triphasic total stresses 145 6.1.1. Stress description within micro-scale volumes and interfaces of triphasic materials 145 6.1.2. Total stress derivation 146 6.2. Numerical modeling of wet ideal granular materials 149 6.2.1. DEM description of fluid microstructure 149 6.2.2. DEM description of stress and strains 152 6.3. Anisotropy of the capillary stress contribution 154 6.3.1. Mechanical loading 155 6.3.2. Hydraulic loading 157 6.4. Effective stress 160 6.5. Conclusion 162 6.6. Bibliography 163 Chapter 7. Effect of the Third Invariant of the Stress Deviator on the Response of Porous Solids with Pressure-Insensitive Matrix 167 José Luis ALVES and Oana CAZACU 7.1. Introduction 168 7.2. Problem statement and method of analysis 171 7.2.1. Drucker yield criterion for isotropic materials 171 7.2.2. Unit cell model 173 7.3. Results 179 7.3.1. Yield surfaces and porosity evolution 179 7.4. Conclusions 190 7.5. Bibliography 194 Chapter 8. High Performance Data-Driven Multiscale Inverse Constitutive Characterization of Composites 197 John MICHOPOULOS, Athanasios ILIOPOULOS, John HERMANSON, John STEUBEN and Foteini KOMNINELI 8.1. Introduction 198 8.2. Automated multi-axial testing 202 8.2.1. Loading space 204 8.2.2. Experimental campaign 206 8.3. Constitutive formalisms 207 8.3.1. Small strain formulation 208 8.3.2. Finite strain formulation 209 8.4. Meshless random grid method for experimental evaluation of strain fields 209 8.5. Inverse determination of HDM via design optimization 211 8.5.1. Numerical results of design optimization 214 8.6. Surrogate models for characterization 216 8.6.1. Definition and construction of the surrogate model 218 8.6.2. Characterization by optimization 219 8.6.3. Validation with physical experiments 221 8.7. Multi-scale inversion 221 8.7.1. Forward problem: mathematical homogenization 222 8.7.2. Inverse problem 224 8.8. Computational framework and synthetic experiments 226 8.9. Conclusions and plans 230 8.10. Acknowledgments 232 8.11. Bibliography 232 Chapter 9. New Trends in Computational Mechanics: Model Order Reduction, Manifold Learning and Data-Driven 239 Jose Vicente AGUADO, Domenico BORZACCHIELLO, Elena LOPEZ, Emmanuelle ABISSET-CHAVANNE, David GONZALEZ, Elias CUETO and Francisco CHINESTA 9.1. Introduction 240 9.1.1. The big picture 240 9.1.2. The PGD at a glance 242 9.2. Constructing slow manifolds 245 9.2.1. From principal component analysis (PCA) to kernel principal component analysis (kPCA) 245 9.2.2. Kernel principal component analysis (kPCA) 249 9.2.3. Locally linear embedding (LLE) 250 9.2.4. Discussion 251 9.3. Manifold-learning-based computational mechanics 252 9.4. Data-driven simulations 253 9.4.1. Data-based weak form 254 9.4.2. Constructing the constitutive manifold 254 9.5. Data-driven upscaling of viscous flows in porous media 257 9.5.1. Upscaling Newtonian and generalized Newtonian fluids flowing in porous media 258 9.6. Conclusions 260 9.7. Bibliography 261 List of Authors 267 Index 271
, Mijo NIKOLI
and Adnan IBRAHIMBEGOVI
4.1. Introduction 99 4.2. Meso-scale model 102 4.3. Macroscopic model response 106 4.3.1. Uniaxial tests 106 4.3.2. Failure surface 111 4.4. Conclusions 117 4.5. Acknowledgments 119 4.6. Bibliography 120 Chapter 5. Discrete Numerical Simulations of the Strength and Microstructure Evolution During Compaction of Layered Granular Solids 123 Bereket YOHANNES, Marcial GONZALEZ and Alberto M. CUITIÑO 5.1. Introduction 123 5.2. Numerical simulation 127 5.2.1. Discrete particle simulations of powder compaction 127 5.2.2. Discrete particle simulation of layered compacts 129 5.3. Discussion 131 5.4. Conclusion 137 5.5. Acknowledgements 137 5.6. Bibliography 137 Chapter 6. Microstructural Views of Stresses in Three-Phase Granular Materials 143 Jérôme DURIEZ, Richard WAN and Félix DARVE 6.1. Microstructural expression of triphasic total stresses 145 6.1.1. Stress description within micro-scale volumes and interfaces of triphasic materials 145 6.1.2. Total stress derivation 146 6.2. Numerical modeling of wet ideal granular materials 149 6.2.1. DEM description of fluid microstructure 149 6.2.2. DEM description of stress and strains 152 6.3. Anisotropy of the capillary stress contribution 154 6.3.1. Mechanical loading 155 6.3.2. Hydraulic loading 157 6.4. Effective stress 160 6.5. Conclusion 162 6.6. Bibliography 163 Chapter 7. Effect of the Third Invariant of the Stress Deviator on the Response of Porous Solids with Pressure-Insensitive Matrix 167 José Luis ALVES and Oana CAZACU 7.1. Introduction 168 7.2. Problem statement and method of analysis 171 7.2.1. Drucker yield criterion for isotropic materials 171 7.2.2. Unit cell model 173 7.3. Results 179 7.3.1. Yield surfaces and porosity evolution 179 7.4. Conclusions 190 7.5. Bibliography 194 Chapter 8. High Performance Data-Driven Multiscale Inverse Constitutive Characterization of Composites 197 John MICHOPOULOS, Athanasios ILIOPOULOS, John HERMANSON, John STEUBEN and Foteini KOMNINELI 8.1. Introduction 198 8.2. Automated multi-axial testing 202 8.2.1. Loading space 204 8.2.2. Experimental campaign 206 8.3. Constitutive formalisms 207 8.3.1. Small strain formulation 208 8.3.2. Finite strain formulation 209 8.4. Meshless random grid method for experimental evaluation of strain fields 209 8.5. Inverse determination of HDM via design optimization 211 8.5.1. Numerical results of design optimization 214 8.6. Surrogate models for characterization 216 8.6.1. Definition and construction of the surrogate model 218 8.6.2. Characterization by optimization 219 8.6.3. Validation with physical experiments 221 8.7. Multi-scale inversion 221 8.7.1. Forward problem: mathematical homogenization 222 8.7.2. Inverse problem 224 8.8. Computational framework and synthetic experiments 226 8.9. Conclusions and plans 230 8.10. Acknowledgments 232 8.11. Bibliography 232 Chapter 9. New Trends in Computational Mechanics: Model Order Reduction, Manifold Learning and Data-Driven 239 Jose Vicente AGUADO, Domenico BORZACCHIELLO, Elena LOPEZ, Emmanuelle ABISSET-CHAVANNE, David GONZALEZ, Elias CUETO and Francisco CHINESTA 9.1. Introduction 240 9.1.1. The big picture 240 9.1.2. The PGD at a glance 242 9.2. Constructing slow manifolds 245 9.2.1. From principal component analysis (PCA) to kernel principal component analysis (kPCA) 245 9.2.2. Kernel principal component analysis (kPCA) 249 9.2.3. Locally linear embedding (LLE) 250 9.2.4. Discussion 251 9.3. Manifold-learning-based computational mechanics 252 9.4. Data-driven simulations 253 9.4.1. Data-based weak form 254 9.4.2. Constructing the constitutive manifold 254 9.5. Data-driven upscaling of viscous flows in porous media 257 9.5.1. Upscaling Newtonian and generalized Newtonian fluids flowing in porous media 258 9.6. Conclusions 260 9.7. Bibliography 261 List of Authors 267 Index 271