This books aims at filling a gap between the basics courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. Particular emphasis is given to the role of symmetry in modern theoretical physics. For this reason this book is particularly suited to those students who are interested in a deeper knowledge of modern developments in elementary particle physics and relativity, even if they choose not to specialize in this branch of research. This target of readers includes, besides experimental and applied physicists, also those engineers who need advanced notions of theoretical high energy physics, in view of future research activity in the field theory approach to condensed matter, in accelerator physics and in all those modern technology sectors which require a more advanced and sophisticated theoretical physics background. Courses motivated by these objectives are present in several polytechnic institutes around the world. The last chapters of this book, in particular, are of particular importance to those engineers who plan to work in high energy physics research centres, like LHC at CERN, or to collaborate to experiments on the revelation of gravitational waves. As far as engineering is concerned, it is important to stress that elementary Special and General Relativity courses are often absent in their curricula.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This book originates from a course on advanced quantum mechanics given by the author at the Politechnico Turin for students of physical engineering to provide them with some insight into modern fundamental physics. ... This book not merely gives some insight into modern fundamental physics but also renders a good fundament for further studies of quantum field theory and elementary article physics in that correct suggestions are mediated." (K.-E. Hellwig, zbMATH 1371.81001, 2017)