Frontiers of Surface-Enhanced Raman Scattering (eBook, ePUB)
Single Nanoparticles and Single Cells
Alle Infos zum eBook verschenken
Frontiers of Surface-Enhanced Raman Scattering (eBook, ePUB)
Single Nanoparticles and Single Cells
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 19.32MB
- Yukihiro OzakiFrontiers of Surface-Enhanced Raman Scattering (eBook, PDF)125,99 €
- Haifei ZhangIce Templating and Freeze-Drying for Porous Materials and Their Applications (eBook, ePUB)133,99 €
- Surface Enhanced Raman Spectroscopy (eBook, ePUB)144,99 €
- Ewen SmithModern Raman Spectroscopy (eBook, ePUB)62,99 €
- Mössbauer Spectroscopy (eBook, ePUB)164,99 €
- Advances in Novel Formulations for Drug Delivery (eBook, ePUB)191,99 €
- Nanoparticulate Drug Delivery Systems (eBook, ePUB)141,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 336
- Erscheinungstermin: 19. Februar 2014
- Englisch
- ISBN-13: 9781118703571
- Artikelnr.: 40515055
- Verlag: John Wiley & Sons
- Seitenzahl: 336
- Erscheinungstermin: 19. Februar 2014
- Englisch
- ISBN-13: 9781118703571
- Artikelnr.: 40515055
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface xv
1. Calculation of Surface-Enhanced Raman Spectra Including Orientational
and Stokes Effects Using TDDFT/Mie Theory QM/ED Method 1
George C. Schatz and Nicholas A. Valley
1.1 Introduction: Combined Quantum Mechanics/Electrodynamics Methods 1
1.2 Computational Details 3
1.3 Summary of Model Systems 4
1.4 Azimuthal Averaging 5
1.5 SERS of Pyridine: Models G, A, B, S, and V 6
1.6 Orientation Effects in SERS of Phthalocyanines 11
1.7 Two Particle QM/ED Calculations 13
1.8 Summary 15
Acknowledgment 16
References 16
2. Non-resonant SERS Using the Hottest Hot Spots of Plasmonic
Nanoaggregates 19
Katrin Kneipp and Harald Kneipp
2.1 Introduction 19
2.2 Aggregates of Silver and Gold Nanoparticles and Their Hot Spots 21
2.2.1 Evaluation of Plasmonic Nanoaggregates by Vibrational Pumping due to
a Non-resonant SERS Process 21
2.2.2 Probing Plasmonic Nanoaggregates by Electron Energy Loss Spectroscopy
24
2.2.3 Probing Local Fields in Hot Spots by SERS and SEHRS 25
2.3 SERS Using Hot Silver Nanoaggregates and Non-resonant NIR Excitation 26
2.3.1 SERS Signal vs. Concentration of the Target Molecule 26
2.3.2 Spectroscopic Potential of Non-resonant SERS Using the Hottest Hot
Spots 30
2.4 Summary and Conclusions 31
References 32
3. Effect of Nanoparticle Symmetry on Plasmonic Fields: Implications for
Single-Molecule Raman Scattering 37
Lev Chuntonov and Gilad Haran
3.1 Introduction 37
3.2 Methodology 38
3.3 Plasmon Mode Structure of Nanoparticle Clusters 39
3.3.1 Dimers 39
3.3.2 Trimers 40
3.4 Effect of Plasmon Modes on SMSERS 47
3.4.1 Effect of the Spectral Lineshape 47
3.4.2 Effect of Multiple Normal Modes 49
3.5 Conclusions 54
Acknowledgment 54
References 54
4. Experimental Demonstration of Electromagnetic Mechanism of SERS and
Quantitative Analysis of SERS Fluctuation Based on the Mechanism 59
Tamitake Itoh
4.1 Experimental Demonstration of the EM Mechanism of SERS 59
4.1.1 Introduction 59
4.1.2 Observations of the EM Mechanism in SERS Spectral Variations 60
4.1.3 Observations of the EM Mechanism in the Refractive Index Dependence
of SERS Spectra 62
4.1.4 Quantitative Evaluation of the EM Mechanism of SERS 64
4.1.5 Summary 72
4.2 Quantitative Analysis of SERS Fluctuation Based on the EM Mechanism 72
4.2.1 Introduction 72
4.2.2 Intensity and Spectral Fluctuation in SERS and SEF 73
4.2.3 Framework for Analysis of Fluctuation in SERS and SEF 73
4.2.4 Analysis of Intensity Fluctuation in SERS and SEF 76
4.2.5 Analysis of Spectral Fluctuation in SERS and SEF 78
4.2.6 Summary 82
4.3 Conclusion 82
Acknowledgments 83
References 83
5. Single-Molecule Surface-Enhanced Raman Scattering as a Probe for
Adsorption Dynamics on Metal Surfaces 89
Mai Takase, Fumika Nagasawa, Hideki Nabika and Kei Murakoshi
5.1 Introduction 89
5.2 Simultaneous Measurements of Conductance and SERS of a Single-Molecule
Junction 90
5.3 SERS Observation Using Heterometallic Nanodimers at the Single-Molecule
Level 96
5.4 Conclusion 101
Acknowledgments 101
References 101
6. Analysis of Blinking SERS by a Power Law with an Exponential Function
107
Yasutaka Kitahama and Yukihiro Ozaki
6.1 Introduction 107
6.2 Materials and Methods 110
6.3 Power Law Analysis 110
6.4 Plasmon Resonance Wavelength Dependence 117
6.4.1 Power Law Exponents for the Bright and Dark Events 117
6.4.2 Truncation Time for the Dark Events 123
6.5 Energy Density Dependence 123
6.5.1 Power Law Exponents for the Bright and Dark Events 123
6.5.2 Truncation Time for the Dark Events 125
6.5.3 Comparison with Other Analysis 126
6.6 Temperature Dependence 129
6.6.1 Power Law Exponents for the Bright and Dark Events 129
6.6.2 Truncation Time for the Dark Events 129
6.6.3 Comparison with Other Analysis 130
6.7 Summary 132
Acknowledgments 132
References 133
7. Tip-Enhanced Raman Spectroscopy (TERS) for Nanoscale Imaging and
Analysis 139
Taka-aki Yano and Satoshi Kawata
7.1 Crucial Difference between TERS and SERS 139
7.2 TERS-Specific Spectral Change as a Function of Tip-Sample Distance 141
7.3 Mechanical Effect in TERS 143
7.4 Application to Analytical Nano-Imaging 144
7.5 Metallic Probe Tip: Design and Fabrication 149
7.6 Spatial Resolution 154
7.7 Real-Time and 3D Imaging: Perspectives 155
References 156
8. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) 163
Jian-Feng Li and Zhong-Qun Tian
8.1 Introduction 163
8.2 Synthesis of Various Shell-Isolated Nanoparticles (SHINs) 167
8.3 Characterizations of SHINs 169
8.3.1 Correlation of the SHINERS Intensity and Shell Thickness 169
8.3.2 Characterization of the Ultra-Thin Uniform Silica Shell 171
8.3.3 Influence of the SHINs on the Surface 172
8.4 Applications of SHINERS 173
8.4.1 Single-Crystal Electrode Surface 173
8.4.2 Non-Metallic Material Surfaces 175
8.4.3 Single Particle SHINERS 178
8.5 Different Strategies of SHINERS Compared to Previous SERS Works Using
Core-Shell or Overlayer Structures 178
8.6 Advantages of Isolated Mode over Contact Mode 180
8.7 Concluding Discussion 184
8.8 Outlook 185
Acknowledgments 186
References 186
9. Applying Super-Resolution Imaging Techniques to Problems in
Single-Molecule SERS 193
Eric J. Titus and Katherine A. Willets
9.1 Introduction 193
9.1.1 Single-Molecule Surface-Enhanced Raman Scattering (SM-SERS) 193
9.1.2 Super-Resolution Imaging 194
9.2 Experimental Considerations for Super-Resolution SM-SERS 195
9.2.1 Sample Preparation 195
9.2.2 Instrument Set-up 196
9.2.3 Camera Pixels and Theoretical Uncertainties 197
9.2.4 Correlated Imaging and Spectroscopy in Super-Resolution SM-SERS 198
9.2.5 Correlated Optical and Structural Data 199
9.3 Super-Resolution SM-SERS Analysis 200
9.3.1 Mechanical Drift Correction 201
9.3.2 Analysis of Background Nanoparticle Luminescence 202
9.3.3 Calculating the SM-SERS Centroid Position 202
9.4 Super-Resolution SM-SERS Examples 204
9.4.1 Mapping SM-SERS Hot Spots 204
9.4.2 The Role of Plasmon-Enhanced Electromagnetic Fields: Structure
Correlation Studies 206
9.4.3 The Role of the Molecule: Isotope-Edited Studies 210
9.5 Conclusions 214
References 214
10. Lithographically-Fabricated SERS Substrates: Double Resonances,
Nanogaps, and Beamed Emission 219
Kenneth B. Crozier, Wenqi Zhu, Yizhuo Chu, Dongxing Wang and Mohamad Banaee
10.1 Introduction 219
10.2 Double Resonance SERS Substrates 220
10.3 Lithographically-Fabricated Nanogap Dimers 226
10.4 Beamed Raman Scattering 229
10.5 Conclusions 238
References 239
11. Plasmon-Enhanced Scattering and Fluorescence Used for Ultrasensitive
Detection in Langmuir-Blodgett Monolayers 243
Diogo Volpati, Aisha Alsaleh, Carlos J. L. Constantino and Ricardo F. Aroca
11.1 Introduction 243
11.2 Surface-Enhanced Resonance Raman Scattering of Tagged Phospholipids
245
11.2.1 Experimental Details 245
11.2.2 Langmuir and LB films 246
11.2.3 Electronic Absorption 247
11.2.4 Characteristic Vibrational Modes of the Tagged Phospholipid 248
11.2.5 Single Molecule Detection 250
11.3 Shell-Isolated Nanoparticle Enhanced Fluorescence (SHINEF) 251
11.3.1 Tuning the Enhancement Factor in SHINEF 251
11.3.2 SHINEF of Fluorescein-DHPE 253
11.4 Conclusions 254
Acknowledgments 255
References 255
12. SERS Analysis of Bacteria, Human Blood, and Cancer Cells: a Metabolomic
and Diagnostic Tool 257
W. Ranjith Premasiri, Paul Lemler, Ying Chen, Yoseph Gebregziabher and
Lawrence D. Ziegler
12.1 Introduction 257
12.2 SERS of Bacterial Cells: Methodology and Diagnostics 258
12.3 Characteristics of SERS Spectra of Bacteria 261
12.4 PCA Barcode Analysis 263
12.5 Biological Origins of Bacterial SERS Signatures 265
12.6 SERS Bacterial Identification in Human Body Fluids: Bacteremia and UTI
Diagnostics 266
12.7 Red Blood Cells and Hemoglobin: Blood Aging and Disease Detection 267
12.8 SERS of Whole Blood 269
12.9 SERS of RBCs 271
12.10 Malaria Detection 273
12.11 Cancer Cell Detection: Metabolic Profiling by SERS 273
12.12 Conclusions 276
Acknowledgment 277
References 277
13. SERS in Cells: from Concepts to Practical Applications 285
Janina Kneipp and Daniela Drescher
13.1 Introduction 285
13.2 SERS Labels and SERS Nanoprobes: Different Approaches to Obtain
Different Information 286
13.2.1 Highlighting Cellular Substructures with SERS Labels 286
13.2.2 Probing Intrinsic Cellular Biochemistry with SERS Nanoprobes 288
13.3 Consequences of Endocytotic Uptake and Processing for Intrinsic SERS
Probing in Cells 289
13.4 Quantification of Metal Nanoparticles in Cells 292
13.5 Toxicity Considerations 295
13.6 Applications 298
13.6.1 pH Nanosensors for Studies in Live Cells 298
13.6.2 Following Cell Division with SERS 299
Acknowledgment 301
References 301
Index 309
Preface xv
1. Calculation of Surface-Enhanced Raman Spectra Including Orientational
and Stokes Effects Using TDDFT/Mie Theory QM/ED Method 1
George C. Schatz and Nicholas A. Valley
1.1 Introduction: Combined Quantum Mechanics/Electrodynamics Methods 1
1.2 Computational Details 3
1.3 Summary of Model Systems 4
1.4 Azimuthal Averaging 5
1.5 SERS of Pyridine: Models G, A, B, S, and V 6
1.6 Orientation Effects in SERS of Phthalocyanines 11
1.7 Two Particle QM/ED Calculations 13
1.8 Summary 15
Acknowledgment 16
References 16
2. Non-resonant SERS Using the Hottest Hot Spots of Plasmonic
Nanoaggregates 19
Katrin Kneipp and Harald Kneipp
2.1 Introduction 19
2.2 Aggregates of Silver and Gold Nanoparticles and Their Hot Spots 21
2.2.1 Evaluation of Plasmonic Nanoaggregates by Vibrational Pumping due to
a Non-resonant SERS Process 21
2.2.2 Probing Plasmonic Nanoaggregates by Electron Energy Loss Spectroscopy
24
2.2.3 Probing Local Fields in Hot Spots by SERS and SEHRS 25
2.3 SERS Using Hot Silver Nanoaggregates and Non-resonant NIR Excitation 26
2.3.1 SERS Signal vs. Concentration of the Target Molecule 26
2.3.2 Spectroscopic Potential of Non-resonant SERS Using the Hottest Hot
Spots 30
2.4 Summary and Conclusions 31
References 32
3. Effect of Nanoparticle Symmetry on Plasmonic Fields: Implications for
Single-Molecule Raman Scattering 37
Lev Chuntonov and Gilad Haran
3.1 Introduction 37
3.2 Methodology 38
3.3 Plasmon Mode Structure of Nanoparticle Clusters 39
3.3.1 Dimers 39
3.3.2 Trimers 40
3.4 Effect of Plasmon Modes on SMSERS 47
3.4.1 Effect of the Spectral Lineshape 47
3.4.2 Effect of Multiple Normal Modes 49
3.5 Conclusions 54
Acknowledgment 54
References 54
4. Experimental Demonstration of Electromagnetic Mechanism of SERS and
Quantitative Analysis of SERS Fluctuation Based on the Mechanism 59
Tamitake Itoh
4.1 Experimental Demonstration of the EM Mechanism of SERS 59
4.1.1 Introduction 59
4.1.2 Observations of the EM Mechanism in SERS Spectral Variations 60
4.1.3 Observations of the EM Mechanism in the Refractive Index Dependence
of SERS Spectra 62
4.1.4 Quantitative Evaluation of the EM Mechanism of SERS 64
4.1.5 Summary 72
4.2 Quantitative Analysis of SERS Fluctuation Based on the EM Mechanism 72
4.2.1 Introduction 72
4.2.2 Intensity and Spectral Fluctuation in SERS and SEF 73
4.2.3 Framework for Analysis of Fluctuation in SERS and SEF 73
4.2.4 Analysis of Intensity Fluctuation in SERS and SEF 76
4.2.5 Analysis of Spectral Fluctuation in SERS and SEF 78
4.2.6 Summary 82
4.3 Conclusion 82
Acknowledgments 83
References 83
5. Single-Molecule Surface-Enhanced Raman Scattering as a Probe for
Adsorption Dynamics on Metal Surfaces 89
Mai Takase, Fumika Nagasawa, Hideki Nabika and Kei Murakoshi
5.1 Introduction 89
5.2 Simultaneous Measurements of Conductance and SERS of a Single-Molecule
Junction 90
5.3 SERS Observation Using Heterometallic Nanodimers at the Single-Molecule
Level 96
5.4 Conclusion 101
Acknowledgments 101
References 101
6. Analysis of Blinking SERS by a Power Law with an Exponential Function
107
Yasutaka Kitahama and Yukihiro Ozaki
6.1 Introduction 107
6.2 Materials and Methods 110
6.3 Power Law Analysis 110
6.4 Plasmon Resonance Wavelength Dependence 117
6.4.1 Power Law Exponents for the Bright and Dark Events 117
6.4.2 Truncation Time for the Dark Events 123
6.5 Energy Density Dependence 123
6.5.1 Power Law Exponents for the Bright and Dark Events 123
6.5.2 Truncation Time for the Dark Events 125
6.5.3 Comparison with Other Analysis 126
6.6 Temperature Dependence 129
6.6.1 Power Law Exponents for the Bright and Dark Events 129
6.6.2 Truncation Time for the Dark Events 129
6.6.3 Comparison with Other Analysis 130
6.7 Summary 132
Acknowledgments 132
References 133
7. Tip-Enhanced Raman Spectroscopy (TERS) for Nanoscale Imaging and
Analysis 139
Taka-aki Yano and Satoshi Kawata
7.1 Crucial Difference between TERS and SERS 139
7.2 TERS-Specific Spectral Change as a Function of Tip-Sample Distance 141
7.3 Mechanical Effect in TERS 143
7.4 Application to Analytical Nano-Imaging 144
7.5 Metallic Probe Tip: Design and Fabrication 149
7.6 Spatial Resolution 154
7.7 Real-Time and 3D Imaging: Perspectives 155
References 156
8. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) 163
Jian-Feng Li and Zhong-Qun Tian
8.1 Introduction 163
8.2 Synthesis of Various Shell-Isolated Nanoparticles (SHINs) 167
8.3 Characterizations of SHINs 169
8.3.1 Correlation of the SHINERS Intensity and Shell Thickness 169
8.3.2 Characterization of the Ultra-Thin Uniform Silica Shell 171
8.3.3 Influence of the SHINs on the Surface 172
8.4 Applications of SHINERS 173
8.4.1 Single-Crystal Electrode Surface 173
8.4.2 Non-Metallic Material Surfaces 175
8.4.3 Single Particle SHINERS 178
8.5 Different Strategies of SHINERS Compared to Previous SERS Works Using
Core-Shell or Overlayer Structures 178
8.6 Advantages of Isolated Mode over Contact Mode 180
8.7 Concluding Discussion 184
8.8 Outlook 185
Acknowledgments 186
References 186
9. Applying Super-Resolution Imaging Techniques to Problems in
Single-Molecule SERS 193
Eric J. Titus and Katherine A. Willets
9.1 Introduction 193
9.1.1 Single-Molecule Surface-Enhanced Raman Scattering (SM-SERS) 193
9.1.2 Super-Resolution Imaging 194
9.2 Experimental Considerations for Super-Resolution SM-SERS 195
9.2.1 Sample Preparation 195
9.2.2 Instrument Set-up 196
9.2.3 Camera Pixels and Theoretical Uncertainties 197
9.2.4 Correlated Imaging and Spectroscopy in Super-Resolution SM-SERS 198
9.2.5 Correlated Optical and Structural Data 199
9.3 Super-Resolution SM-SERS Analysis 200
9.3.1 Mechanical Drift Correction 201
9.3.2 Analysis of Background Nanoparticle Luminescence 202
9.3.3 Calculating the SM-SERS Centroid Position 202
9.4 Super-Resolution SM-SERS Examples 204
9.4.1 Mapping SM-SERS Hot Spots 204
9.4.2 The Role of Plasmon-Enhanced Electromagnetic Fields: Structure
Correlation Studies 206
9.4.3 The Role of the Molecule: Isotope-Edited Studies 210
9.5 Conclusions 214
References 214
10. Lithographically-Fabricated SERS Substrates: Double Resonances,
Nanogaps, and Beamed Emission 219
Kenneth B. Crozier, Wenqi Zhu, Yizhuo Chu, Dongxing Wang and Mohamad Banaee
10.1 Introduction 219
10.2 Double Resonance SERS Substrates 220
10.3 Lithographically-Fabricated Nanogap Dimers 226
10.4 Beamed Raman Scattering 229
10.5 Conclusions 238
References 239
11. Plasmon-Enhanced Scattering and Fluorescence Used for Ultrasensitive
Detection in Langmuir-Blodgett Monolayers 243
Diogo Volpati, Aisha Alsaleh, Carlos J. L. Constantino and Ricardo F. Aroca
11.1 Introduction 243
11.2 Surface-Enhanced Resonance Raman Scattering of Tagged Phospholipids
245
11.2.1 Experimental Details 245
11.2.2 Langmuir and LB films 246
11.2.3 Electronic Absorption 247
11.2.4 Characteristic Vibrational Modes of the Tagged Phospholipid 248
11.2.5 Single Molecule Detection 250
11.3 Shell-Isolated Nanoparticle Enhanced Fluorescence (SHINEF) 251
11.3.1 Tuning the Enhancement Factor in SHINEF 251
11.3.2 SHINEF of Fluorescein-DHPE 253
11.4 Conclusions 254
Acknowledgments 255
References 255
12. SERS Analysis of Bacteria, Human Blood, and Cancer Cells: a Metabolomic
and Diagnostic Tool 257
W. Ranjith Premasiri, Paul Lemler, Ying Chen, Yoseph Gebregziabher and
Lawrence D. Ziegler
12.1 Introduction 257
12.2 SERS of Bacterial Cells: Methodology and Diagnostics 258
12.3 Characteristics of SERS Spectra of Bacteria 261
12.4 PCA Barcode Analysis 263
12.5 Biological Origins of Bacterial SERS Signatures 265
12.6 SERS Bacterial Identification in Human Body Fluids: Bacteremia and UTI
Diagnostics 266
12.7 Red Blood Cells and Hemoglobin: Blood Aging and Disease Detection 267
12.8 SERS of Whole Blood 269
12.9 SERS of RBCs 271
12.10 Malaria Detection 273
12.11 Cancer Cell Detection: Metabolic Profiling by SERS 273
12.12 Conclusions 276
Acknowledgment 277
References 277
13. SERS in Cells: from Concepts to Practical Applications 285
Janina Kneipp and Daniela Drescher
13.1 Introduction 285
13.2 SERS Labels and SERS Nanoprobes: Different Approaches to Obtain
Different Information 286
13.2.1 Highlighting Cellular Substructures with SERS Labels 286
13.2.2 Probing Intrinsic Cellular Biochemistry with SERS Nanoprobes 288
13.3 Consequences of Endocytotic Uptake and Processing for Intrinsic SERS
Probing in Cells 289
13.4 Quantification of Metal Nanoparticles in Cells 292
13.5 Toxicity Considerations 295
13.6 Applications 298
13.6.1 pH Nanosensors for Studies in Live Cells 298
13.6.2 Following Cell Division with SERS 299
Acknowledgment 301
References 301
Index 309