CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . .. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . .. . . . . . . . . . . .. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . .. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . .. . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.