Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Build the energy sources of the future with these advanced materials The search for clean and sustainable energy sources capable of meeting global needs is the defining challenge of the current era. Renewable sources point the way forward, but their intrinsic instability creates an increased urgency for the development of large-scale energy storage systems comprised of stable, durable materials. An understanding of functional materials of this kind and the catalytic processes in which they'll necessarily be incorporated has never been more essential. Functional Materials for…mehr
Build the energy sources of the future with these advanced materials
The search for clean and sustainable energy sources capable of meeting global needs is the defining challenge of the current era. Renewable sources point the way forward, but their intrinsic instability creates an increased urgency for the development of large-scale energy storage systems comprised of stable, durable materials. An understanding of functional materials of this kind and the catalytic processes in which they'll necessarily be incorporated has never been more essential.
Functional Materials for Electrocatalytic Energy Conversion provides a systematic overview of these materials and their role in electrocatalytic conversion processes. Covering all major energy-producing reactions, as well as preparation methods and physiochemical properties of specific materials, it constitutes a major contribution to the global renewable-energy project.
Functional Materials for Electrocatalytic Energy Conversion readers will also find:
Guidance for the design and construction of functional materials
Detailed treatment of reaction processes including hydrogen evolution, oxygen reduction, oxygen evolution, and many more
Critical discussion of cutting-edge processes still under development, such as liquid fuel oxidation and oxygen reduction
Functional Materials for Electrocatalytic Energy Conversion is ideal for materials scientists, electrochemists, catalytic chemists, and any other researchers working with energy conversion and storage.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Zhicheng Zhang, PhD, is Professor at Tianjin University, China. He has previously worked as a postdoctoral research university at Tsinghua University, China, and a senior research fellow at Nanyang Technological University, Singapore. His research focuses on functional metal-based nanomaterials and their energy catalysis applicatios, and he serves as the associate editor of SmartMat, among others. Meiting Zhao, PhD, is Professor at Tianjin University, China. He has previously worked as a postdoctoral research fellow at Nanyang Technological University, Singapore, and his research concerns the design, synthesis, and applications of various functional materials in selective catalysis and energy conversion. Yuchen Qin, PhD, is Professor at Henan Agricultural University, China. He has previously worked as an engineer in the Sinopec engineering group, Luoyang Research and Development Center of Technologies. His research focuses on the geometric and electronic structure of functional metal-based nanomaterials.
Inhaltsangabe
Chapter 1 Introduction
Part I. Advanced Functional Materials for Electrocatalytic Energy Conversion
Chapter 2 Density Functional Theory for Electrocatalytic Energy Conversion
Chapter 3 Electrocatalytic Reaction Mechanism for Energy Conversion
Part II. Advanced Functional Materials for Electrocatalytic Hydrogen Evolution Reaction
Chapter 4 Metal-based Materials for Electrocatalytic Hydrogen Evolution Reaction
Chapter 5 Metal Compounds for Electrocatalytic Hydrogen Evolution Reaction
Chapter 6 Carbon-based Materials for Electrocatalytic Hydrogen Evolution Reaction
Chapter 7 Porous Materials for Electrocatalytic Hydrogen Evolution Reaction
Part III. Advanced Functional Materials for Electrocatalytic Oxygen Reduction Reaction
Chapter 8 Metal-based Materials for Electrocatalytic Oxygen Reduction Reaction
Chapter 9 Carbon-Based Materials for Electrocatalytic Oxygen Reduction Reaction
Chapter 10 Porous Materials for Electrocatalytic Oxygen Reduction Reaction
Part IV. Advanced Functional Materials for Electrocatalytic Oxygen Evolution Reaction
Chapter 11 Metal-based Materials for Electrocatalytic Oxygen Evolution Reaction
Chapter 12 Metallic Compounds for Electrocatalytic Oxygen Evolution Reaction
Chapter 13 Porous Materials for Electrocatalytic Oxygen Evolution Reaction
Part V. Advanced Functional Materials for Electrocatalytic CO2 Reduction Reaction
Chapter 14 Cu-Based Metal Materials for Electrocatalytic CO2 Reduction Reaction
Chapter 15 Non-Cu Metal-Based Materials for Electrocatalytic CO2 Reduction Reaction
Chapter 16 Carbon-based Materials for Electrocatalytic CO2 Reduction Reaction
Chapter 17 Porous materials for CO2 Reduction Reaction
Chapter 18 Cu-Based Compounds for Electrocatalytic CO2 Reduction Reaction
Part VI. Advanced Functional Materials for Electrocatalytic Nitrogen Reduction Reaction
Chapter 19 Metal-based Nanomaterials for Electrocatalytic Nitrogen Reduction Reaction
Chapter 20 Carbon-based Materials for Electrocatalytic N2 Reduction Reaction
Chapter 21 Porous materials for NRR
Part VII. Advanced Functional Materials for Electrocatalytic Liquid Fuel Oxidation
Chapter 22 Metal-based materials for Electrocatalytic Liquid Fuel Oxidation
Chapter 23 Non-noble Metal-based Materials for Electrocatalytic Liquid Fuel Oxidation
Chapter 24 Non-metal Materials for Electrocatalytic Liquid Fuel Oxidation
Part VIII. Advanced Functional Materials for Electrocatalytic Biomass Conversion
Chapter 25 Metal-based Materials for Electrocatalytic Biomass Conversion
Chapter 26 Porous Materials for Electrocatalytic Biomass Conversion