Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Laser powder bed fusion of metals is a technology that makes use of a laser beam to selectively melt metal powder layer-by-layer in order to fabricate complex geometries in high performance materials. The technology is currently transforming aerospace and biomedical manufacturing and its adoption is widening into other industries as well, including automotive, energy, and traditional manufacturing. With an increase in design freedom brought to bear by additive manufacturing, new opportunities are emerging for designs not possible previously and in material systems that now provide sufficient…mehr
Laser powder bed fusion of metals is a technology that makes use of a laser beam to selectively melt metal powder layer-by-layer in order to fabricate complex geometries in high performance materials. The technology is currently transforming aerospace and biomedical manufacturing and its adoption is widening into other industries as well, including automotive, energy, and traditional manufacturing. With an increase in design freedom brought to bear by additive manufacturing, new opportunities are emerging for designs not possible previously and in material systems that now provide sufficient performance to be qualified in end-use mission-critical applications. After decades of research and development, laser powder bed fusion is now enabling a new era of digitally driven manufacturing.
Fundamentals of Laser Powder Bed Fusion of Metals will provide the fundamental principles in a broad range of topics relating to metal laser powder bed fusion. The target audience includes new users, focusing on graduate and undergraduate students; however, this book can also serve as a reference for experienced users as well, including senior researchers and engineers in industry. The current best practices are discussed in detail, as well as the limitations, challenges, and potential research and commercial opportunities moving forward.
Presents laser powder bed fusion fundamentals, as well as their inherent challenges
Provides an up-to-date summary of this advancing technology and its potential
Provides a comprehensive textbook for universities, as well as a reference for industry
Acts as quick-reference guide
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Prof. Igor Yadroitsev is a Research Chair in Medical Product Development through Additive Manufacturing at the Central University of Technology launched by the National Research Foundation of South Africa in 2015. He has been involved in additive manufacturing with emphasis on laser powder bed fusion at the Vitebsk Institution of Technical Acoustics (Belarus) since 1995, when this technology was in its infancy. He continued his research in the field at the National School of Engineering (Saint-Étienne, France) and published a book on selective laser melting in 2009. His research interests include applied optics and laser technologies: additive manufacturing, laser powder bed fusion of metals and plastics, laser processing, materials science, and optics. He has authored over 100 articles in the field of laser powder bed fusion.
Inhaltsangabe
1. Historical background Joseph J. Beaman, University of Texas, Austin, Texas, USA 2. Basics of laser powder bed fusion Igor Yadroitsev and Ina Yadroitsava, Department of Mechanical and Mechatronic Engineering,Central University of Technology, Bloemfontein, Free State, South Africa; Anton Du Plessis, Research Group 3D Innovation, Stellenbosch University, Stellenbosch, Western Cape, South Africa 3. A step-by-step guide to the L-PBF process Igor Yadroitsev and Ina Yadroitsava, Department of Mechanical and Mechatronic Engineering,Central University of Technology, Bloemfontein, Free State, South Africa; 4. Physics and modeling Andrey V. Gusarov, Moscow State University of Technology STANKIN, Moscow, Russia 5. Design principles Martin Leary, David Downing, and Bill Lozanovski, Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia; Jonathan Harris, nTopology, New York, New York, USA 6. Porosity in laser powder bed fusion Anton Du Plessis, Research Group 3D Innovation, Stellenbosch University, Stellenbosch, Western Cape, South Africa 7. Surface roughness Martin Leary, Avik Sarker, Johnathan Tran, Kate Fox, and David Downing, Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia; Mahyar Khorasani, School of Engineering, Deakin University, Waurn Ponds, Victoria, Australia; Anton Du Plessis, Research Group 3D Innovation, Stellenbosch University, Stellenbosch, Western Cape, South Africa8. Microstructure of L-PBF alloys Pavel Krakhmalev, Department of Engineering and Physics, Karlstad University, Karlstad, Sweden; Nataliya Kazantseva, Institute of Metal Physics UB RAS, Ekaterinburg, Russia 9. Residual stress in laser powder bed fusion Lameck Mugwagwa, Ina Yadroitsava and Igor Yadroitsev, Department of Mechanical and Mechatronic Engineering,Central University of Technology, Bloemfontein, Free State, South Africa;Nkutwane Washington Makoana, Council for Scientific and Industrial Research, National Laser Centre, Pretoria, South Africa 10. Non-destructive testing of parts produced by laser powder bed fusion Anton Du Plessis, Research Group 3D Innovation, Stellenbosch University, Stellenbosch, Western Cape, South Africa; Eric MacDonald, W. M. Keck Center for 3D Innovation, University of Texas at El Paso, El Paso, Texas, USA; Jess M. Waller, NASA-Johnson Space Center White Sands Test Facility, Las Cruces, New Mexico, USA; Filippo Berto, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway 11. Process monitoring of laser powder bed fusion Marco Grasso and Bianca Maria Colosimo, Department of Mechanical Engineering, Polytechnic University of Milan, Milan, Italy; Kevin Slattery, The Barnes Global Advisors, Pittsburgh, Pennsylvania, USA; Eric MacDonald, W. M. Keck Center for 3D Innovation, University of Texas at El Paso, El Paso, Texas, USA 12. Post-processing Sara Bagherifard and Mario Guagliano, Department of Mechanical Engineering, Polytechnic University of Milan, Milan, Italy 13. Structural integrity I: static mechanical properties Pavel Krakhmalev, Department of Engineering and Physics, Karlstad University, Karlstad, Sweden; Anna Martin Vilardell and Naoki Takata, Department of Materials Process Engineering, Graduate School of Engineering, NagoyaUniversity, Nagoya, Aich, Japan 14. Structural integrity II: fatigue properties Uwe Zerbst and Mauro Madia, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany 15. Structural integrity III: energy-based fatigue prediction for complex parts Seyed Mohammad Javad Razavi and Filippo Berto, Department of Mechanical and Industrial Engineering, Norwegian University of
1. Historical background Joseph J. Beaman, University of Texas, Austin, Texas, USA 2. Basics of laser powder bed fusion Igor Yadroitsev and Ina Yadroitsava, Department of Mechanical and Mechatronic Engineering,Central University of Technology, Bloemfontein, Free State, South Africa; Anton Du Plessis, Research Group 3D Innovation, Stellenbosch University, Stellenbosch, Western Cape, South Africa 3. A step-by-step guide to the L-PBF process Igor Yadroitsev and Ina Yadroitsava, Department of Mechanical and Mechatronic Engineering,Central University of Technology, Bloemfontein, Free State, South Africa; 4. Physics and modeling Andrey V. Gusarov, Moscow State University of Technology STANKIN, Moscow, Russia 5. Design principles Martin Leary, David Downing, and Bill Lozanovski, Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia; Jonathan Harris, nTopology, New York, New York, USA 6. Porosity in laser powder bed fusion Anton Du Plessis, Research Group 3D Innovation, Stellenbosch University, Stellenbosch, Western Cape, South Africa 7. Surface roughness Martin Leary, Avik Sarker, Johnathan Tran, Kate Fox, and David Downing, Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia; Mahyar Khorasani, School of Engineering, Deakin University, Waurn Ponds, Victoria, Australia; Anton Du Plessis, Research Group 3D Innovation, Stellenbosch University, Stellenbosch, Western Cape, South Africa8. Microstructure of L-PBF alloys Pavel Krakhmalev, Department of Engineering and Physics, Karlstad University, Karlstad, Sweden; Nataliya Kazantseva, Institute of Metal Physics UB RAS, Ekaterinburg, Russia 9. Residual stress in laser powder bed fusion Lameck Mugwagwa, Ina Yadroitsava and Igor Yadroitsev, Department of Mechanical and Mechatronic Engineering,Central University of Technology, Bloemfontein, Free State, South Africa;Nkutwane Washington Makoana, Council for Scientific and Industrial Research, National Laser Centre, Pretoria, South Africa 10. Non-destructive testing of parts produced by laser powder bed fusion Anton Du Plessis, Research Group 3D Innovation, Stellenbosch University, Stellenbosch, Western Cape, South Africa; Eric MacDonald, W. M. Keck Center for 3D Innovation, University of Texas at El Paso, El Paso, Texas, USA; Jess M. Waller, NASA-Johnson Space Center White Sands Test Facility, Las Cruces, New Mexico, USA; Filippo Berto, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway 11. Process monitoring of laser powder bed fusion Marco Grasso and Bianca Maria Colosimo, Department of Mechanical Engineering, Polytechnic University of Milan, Milan, Italy; Kevin Slattery, The Barnes Global Advisors, Pittsburgh, Pennsylvania, USA; Eric MacDonald, W. M. Keck Center for 3D Innovation, University of Texas at El Paso, El Paso, Texas, USA 12. Post-processing Sara Bagherifard and Mario Guagliano, Department of Mechanical Engineering, Polytechnic University of Milan, Milan, Italy 13. Structural integrity I: static mechanical properties Pavel Krakhmalev, Department of Engineering and Physics, Karlstad University, Karlstad, Sweden; Anna Martin Vilardell and Naoki Takata, Department of Materials Process Engineering, Graduate School of Engineering, NagoyaUniversity, Nagoya, Aich, Japan 14. Structural integrity II: fatigue properties Uwe Zerbst and Mauro Madia, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany 15. Structural integrity III: energy-based fatigue prediction for complex parts Seyed Mohammad Javad Razavi and Filippo Berto, Department of Mechanical and Industrial Engineering, Norwegian University of
Rezensionen
"I just finished reading the latest book entitled Fundamentals of Laser Powder Bed Fusion of Metals published by Elsevier which I found to be of exceptional quality. The topics are coherently and overarchingly discussed right from the basics of laser powder bed fusion to its physics and modelling, porosity defects, residual stresses, non-destructive characterisation, process monitoring, lattice materials, metamaterials, mechanical properties, novel material developments and future trends. Altogether there are 24 chapters, each authored by respective leaders in the field totalling 58 authors from around the globe. The book concludes with an interesting case study that puts some of the key aspects into perspective. Overall, this is the most comprehensive book regarding laser powdered bed fusion of metals to date. As such it is a recommended reading for undergraduates, postgraduates, researchers, and advanced practitioners in the field of metal additive manufacturing. The book is suitable both for guided learning and quick reference." --Dr Arun. Arjunan
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826