Steffen Lauritzen
Fundamentals of Mathematical Statistics (eBook, ePUB)
81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
81,95 €
Als Download kaufen
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
41 °P sammeln
Steffen Lauritzen
Fundamentals of Mathematical Statistics (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This books is meant for a standard one-semester advanced undergraduate or graduate level course on Mathematical Statistics. It covers all the key topics - statistical models, linear normal models, exponential families, estimation, asymptotics of maximum likelihood, significance testing, and models for tables of counts.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 1.08MB
Andere Kunden interessierten sich auch für
- Steffen LauritzenFundamentals of Mathematical Statistics (eBook, PDF)81,95 €
- D. R. CoxInference and Asymptotics (eBook, ePUB)183,95 €
- Felix AbramovichStatistical Theory (eBook, ePUB)81,95 €
- Murray AitkinIntroduction to Statistical Modelling and Inference (eBook, ePUB)89,95 €
- Peter H. WestfallUnderstanding Regression Analysis (eBook, ePUB)42,95 €
- Silvelyn ZwanzigBayesian Inference (eBook, ePUB)65,95 €
- Sujit SahuBayesian Modeling of Spatio-Temporal Data with R (eBook, ePUB)47,95 €
-
-
-
This books is meant for a standard one-semester advanced undergraduate or graduate level course on Mathematical Statistics. It covers all the key topics - statistical models, linear normal models, exponential families, estimation, asymptotics of maximum likelihood, significance testing, and models for tables of counts.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 258
- Erscheinungstermin: 17. April 2023
- Englisch
- ISBN-13: 9781000831986
- Artikelnr.: 67695000
- Verlag: Taylor & Francis
- Seitenzahl: 258
- Erscheinungstermin: 17. April 2023
- Englisch
- ISBN-13: 9781000831986
- Artikelnr.: 67695000
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Steffen Lauritzen is Emeritus Professor of Statistics at the University of Copenhagen and the University of Oxford as well as Honorary Professor at Aalborg University. He is most well known for his work on graphical models, in particular represented in a monograph from 1996 with that title, but he has published in a wide range of topics. He has received numerous awards and honours, including the Guy Medal in Silver from the Royal Statistical Society, where he also is an Honorary Fellow. He was elected to the Royal Danish Academy of Sciences and Letters in 2008 and became a Fellow of the Royal Society in 2011.
1. Statistical Models. 1.1. Models and parametrizations. 1.2. Likelihood, score, and information. 1.3. Exercises. 2. Linear Normal Models. 2.1. The multivariate normal distribution. 2.2. The normal distribution on a vector space. 2.3. The linear normal model. 2.4. Exercises. 3. Exponential Families. 3.1. Regular exponential families. 3.2. Examples of exponential families. 3.3. Properties of exponential families. 3.4. Constructing exponential families. 3.5. Moments, score, and information. 3.6. Curved exponential families. 3.7. Exercises. 4. Estimation. 4.1. General concepts and exact properties. 4.2. Various estimation methods. 4.3. The method of maximum likelihood. 4.4. Exercises. 5. Asymptotic Theory. 5.1. Asymptotic consistency and normality. 5.2. Asymptotics of moment estimators. 5.3. Asymptotics in regular exponential families. 5.4. Asymptotics in curved exponential families. 5.5. More about asymptotics. 5.6. Exercises. 6. Set Estimation. 6.1. Basic issues and definition. 6.2. Exact confidence regions by pivots. 6.3. Likelihood based regions. 6.4. Confidence regions by asymptotic pivots. 6.5. Properties of set estimators. 6.6. Credibility regions. 6.7. Exercises. 7. Significance Testing. 7.1. The problem. 7.2. Hypotheses and test statistics. 7.3. Significance and p-values. 7.4. Critical regions, power, and error types. 7.5. Set estimation and testing. 7.6. Test in linear normal models. 7.7. Determining p-values. 7.8. Exercises. 8. Models for Tables of Counts. 8.1. Multinomial exponential families. 8.2. Genetic equilibrium models. 8.3. Contingency tables. 8.4. Exercises.
1. Statistical Models. 1.1. Models and parametrizations. 1.2. Likelihood, score, and information. 1.3. Exercises. 2. Linear Normal Models. 2.1. The multivariate normal distribution. 2.2. The normal distribution on a vector space. 2.3. The linear normal model. 2.4. Exercises. 3. Exponential Families. 3.1. Regular exponential families. 3.2. Examples of exponential families. 3.3. Properties of exponential families. 3.4. Constructing exponential families. 3.5. Moments, score, and information. 3.6. Curved exponential families. 3.7. Exercises. 4. Estimation. 4.1. General concepts and exact properties. 4.2. Various estimation methods. 4.3. The method of maximum likelihood. 4.4. Exercises. 5. Asymptotic Theory. 5.1. Asymptotic consistency and normality. 5.2. Asymptotics of moment estimators. 5.3. Asymptotics in regular exponential families. 5.4. Asymptotics in curved exponential families. 5.5. More about asymptotics. 5.6. Exercises. 6. Set Estimation. 6.1. Basic issues and definition. 6.2. Exact confidence regions by pivots. 6.3. Likelihood based regions. 6.4. Confidence regions by asymptotic pivots. 6.5. Properties of set estimators. 6.6. Credibility regions. 6.7. Exercises. 7. Significance Testing. 7.1. The problem. 7.2. Hypotheses and test statistics. 7.3. Significance and p-values. 7.4. Critical regions, power, and error types. 7.5. Set estimation and testing. 7.6. Test in linear normal models. 7.7. Determining p-values. 7.8. Exercises. 8. Models for Tables of Counts. 8.1. Multinomial exponential families. 8.2. Genetic equilibrium models. 8.3. Contingency tables. 8.4. Exercises.