Sterling K. Berberian
Fundamentals of Real Analysis (eBook, PDF)
57,95 €
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
57,95 €
Als Download kaufen
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
29 °P sammeln
Sterling K. Berberian
Fundamentals of Real Analysis (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
"This book is very well organized and clearly written and contains an adequate supply of exercises. If one is comfortable with the choice of topics in the book, it would be a good candidate for a text in a graduate real analysis course." -- MATHEMATICAL REVIEWS
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 87.46MB
"This book is very well organized and clearly written and contains an adequate supply of exercises. If one is comfortable with the choice of topics in the book, it would be a good candidate for a text in a graduate real analysis course." -- MATHEMATICAL REVIEWS
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 479
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461205494
- Artikelnr.: 44179462
- Verlag: Springer US
- Seitenzahl: 479
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461205494
- Artikelnr.: 44179462
1 Foundations.- 1.1. Logic, set notations.- 1.2. Relations.- 1.3. Functions (mappings).- 1.4. Product sets, axiom of choice.- 1.5. Inverse functions.- 1.6. Equivalence relations, partitions, quotient sets.- 1.7. Order relations.- 1.8. Real numbers.- 1.9. Finite and infinite sets.- 1.10. Countable and uncountable sets.- 1.11. Zorn's lemma, the well-ordering theorem.- 1.12. Cardinality.- 1.13. Cardinal arithmetic, the continuum hypothesis.- 1.14. Ordinality.- 1.15. Extended real numbers.- 1.16. limsup, liminf, convergence in ?.- 2 Lebesgue Measure.- 2.1. Lebesgue outer measure on ?.- 2.2. Measurable sets.- 2.3. Cantor set: an uncountable set of measure zero.- 2.4. Borel sets, regularity.- 2.5. A nonmeasurable set.- 2.6. Abstract measure spaces.- 3 Topology.- 3.1. Metric spaces: examples.- 3.2. Convergence, closed sets and open sets in metric spaces.- 3.3. Topological spaces.- 3.4. Continuity.- 3.5. Limit of a function.- 4 Lebesgue Integral.- 4.1. Measurable functions.- 4.2. a.e..- 4.3. Integrable simple functions.- 4.4. Integrable functions.- 4.5. Monotone convergence theorem, Fatou's lemma.- 4.6. Monotone classes.- 4.7. Indefinite integrals.- 4.8. Finite signed measures.- 5 Differentiation.- 5.1. Bounded variation, absolute continuity.- 5.2. Lebesgue's representation of AC functions.- 5.3. limsup, liminf of functions; Dini derivates.- 5.4. Criteria for monotonicity.- 5.5. Semicontinuity.- 5.6. Semicontinuous approximations of integrable functions.- 5.7. F. Riesz's "Rising sun lemma".- 5.8. Growth estimates of a continuous increasing function.- 5.9. Indefinite integrals are a.e. primitives.- 5.10. Lebesgue's "Fundamental theorem of calculus".- 5.11. Measurability of derivates of a monotone function.- 5.12. Lebesgue decomposition of a function of bounded variation.- 5.13. Lebesgue's criterion for Riemann-integrability.- 6 Function Spaces.- 6.1. Compact metric spaces.- 6.2. Uniform convergence, iterated limits theorem.- 6.3. Complete metric spaces.- 6.4. L1.- 6.5. Real and complex measures.- 6.6. L?.- 6.7. LP(1 < p < ?).- 6.8.C(X).- 6.9. Stone-Weierstrass approximation theorem.- 7 Product Measure.- 7.1. Extension of measures.- 7.2. Product measures.- 7.3. Iterated integrals, Fubini-Tonelli theorem for finite measures.- 7.4. Fubini-Tonelli theorem for o--finite measures.- 8 The Differential Equation y' =f (xy).- 8.1. Equicontinuity, Ascoli's theorem.- 8.2. Picard's existence theorem for y' =f (xy).- 8.3. Peano's existence theorem for y' =f (xy).- 9 Topics in Measure and Integration.- 9.1. Jordan-Hahn decomposition of a signed measure.- 9.2. Radon-Nikodym theorem.- 9.3. Lebesgue decomposition of measures.- 9.4. Convolution in L1(?).- 9.5. Integral operators (with continuous kernel function).- Index of Notations.
1 Foundations.- 1.1. Logic, set notations.- 1.2. Relations.- 1.3. Functions (mappings).- 1.4. Product sets, axiom of choice.- 1.5. Inverse functions.- 1.6. Equivalence relations, partitions, quotient sets.- 1.7. Order relations.- 1.8. Real numbers.- 1.9. Finite and infinite sets.- 1.10. Countable and uncountable sets.- 1.11. Zorn's lemma, the well-ordering theorem.- 1.12. Cardinality.- 1.13. Cardinal arithmetic, the continuum hypothesis.- 1.14. Ordinality.- 1.15. Extended real numbers.- 1.16. limsup, liminf, convergence in ?.- 2 Lebesgue Measure.- 2.1. Lebesgue outer measure on ?.- 2.2. Measurable sets.- 2.3. Cantor set: an uncountable set of measure zero.- 2.4. Borel sets, regularity.- 2.5. A nonmeasurable set.- 2.6. Abstract measure spaces.- 3 Topology.- 3.1. Metric spaces: examples.- 3.2. Convergence, closed sets and open sets in metric spaces.- 3.3. Topological spaces.- 3.4. Continuity.- 3.5. Limit of a function.- 4 Lebesgue Integral.- 4.1. Measurable functions.- 4.2. a.e..- 4.3. Integrable simple functions.- 4.4. Integrable functions.- 4.5. Monotone convergence theorem, Fatou's lemma.- 4.6. Monotone classes.- 4.7. Indefinite integrals.- 4.8. Finite signed measures.- 5 Differentiation.- 5.1. Bounded variation, absolute continuity.- 5.2. Lebesgue's representation of AC functions.- 5.3. limsup, liminf of functions; Dini derivates.- 5.4. Criteria for monotonicity.- 5.5. Semicontinuity.- 5.6. Semicontinuous approximations of integrable functions.- 5.7. F. Riesz's "Rising sun lemma".- 5.8. Growth estimates of a continuous increasing function.- 5.9. Indefinite integrals are a.e. primitives.- 5.10. Lebesgue's "Fundamental theorem of calculus".- 5.11. Measurability of derivates of a monotone function.- 5.12. Lebesgue decomposition of a function of bounded variation.- 5.13. Lebesgue's criterion for Riemann-integrability.- 6 Function Spaces.- 6.1. Compact metric spaces.- 6.2. Uniform convergence, iterated limits theorem.- 6.3. Complete metric spaces.- 6.4. L1.- 6.5. Real and complex measures.- 6.6. L?.- 6.7. LP(1 < p < ?).- 6.8.C(X).- 6.9. Stone-Weierstrass approximation theorem.- 7 Product Measure.- 7.1. Extension of measures.- 7.2. Product measures.- 7.3. Iterated integrals, Fubini-Tonelli theorem for finite measures.- 7.4. Fubini-Tonelli theorem for o--finite measures.- 8 The Differential Equation y' =f (xy).- 8.1. Equicontinuity, Ascoli's theorem.- 8.2. Picard's existence theorem for y' =f (xy).- 8.3. Peano's existence theorem for y' =f (xy).- 9 Topics in Measure and Integration.- 9.1. Jordan-Hahn decomposition of a signed measure.- 9.2. Radon-Nikodym theorem.- 9.3. Lebesgue decomposition of measures.- 9.4. Convolution in L1(?).- 9.5. Integral operators (with continuous kernel function).- Index of Notations.