Future Trends in Microelectronics (eBook, PDF)
Journey into the Unknown
Redaktion: Luryi, Serge; Zaslavsky, Alexander; Xu, Jimmy
Alle Infos zum eBook verschenken
Future Trends in Microelectronics (eBook, PDF)
Journey into the Unknown
Redaktion: Luryi, Serge; Zaslavsky, Alexander; Xu, Jimmy
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Presents the developments in microelectronic-related fields, with comprehensive insight from a number of leading industry professionals The book presents the future developments and innovations in the developing field of microelectronics. The book's chapters contain contributions from various authors, all of whom are leading industry professionals affiliated either with top universities, major semiconductor companies, or government laboratories, discussing the evolution of their profession. A wide range of microelectronic-related fields are examined, including solid-state electronics, material…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 13.68MB
- Chris BinnsIntroduction to Nanoscience and Nanotechnology (eBook, PDF)84,99 €
- Nano and Micromachining (eBook, PDF)139,99 €
- Philippe BassetElectrostatic Kinetic Energy Harvesting (eBook, PDF)139,99 €
- Carole RossiAl-based Energetic Nano Materials (eBook, PDF)139,99 €
- Beyond-CMOS Nanodevices 2 (eBook, PDF)139,99 €
- Serge LuryiFuture Trends in Microelectronics (eBook, PDF)115,99 €
- Hideaki TsuchiyaCarrier Transport in Nanoscale MOS Transistors (eBook, PDF)111,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 384
- Erscheinungstermin: 29. August 2016
- Englisch
- ISBN-13: 9781119069171
- Artikelnr.: 45959219
- Verlag: John Wiley & Sons
- Seitenzahl: 384
- Erscheinungstermin: 29. August 2016
- Englisch
- ISBN-13: 9781119069171
- Artikelnr.: 45959219
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface xix
S. Luryi, J. M. Xu, and A. Zaslavsky
Acknowledgments xxiii
I FUTURE OF DIGITAL SILICON
1.1 Prospects of Future Si Technologies in the Data-Driven World 3
Kinam Kim and Gitae Jeong
1. Introduction 3
2. Memory - DRAM 4
3. Memory - NAND 6
4. Logic technology 8
5. CMOS image sensors 11
6. Packaging technology 13
7. Silicon photonics technology 16
8. Concluding remarks 18
Acknowledgments 18
References 18
1.2 How Lithography Enables Moore's Law 23
J. P. H. Benschop
1. Introduction 23
2. Moore's Law and the contribution of lithography 23
3. Lithography technology: past and present 24
4. Lithography technology: future 26
5. Summary 31
6. Conclusion 31
Acknowledgments 31
References 32
1.3 What Happened to Post-CMOS? 35
P. M. Solomon
1. Introduction 35
2. General constraints on speed and energy 35
3. Guidelines for success 38
4. Benchmarking and examples 40
5. Discussion 46
6. Conclusion 47
Acknowledgments 47
References 47
1.4 Three-Dimensional Integration of Ge and Two-Dimensional Materials for
One-Dimensional Devices 51
M. Östling, E. Dentoni Litta, and P.-E. Hellström
1. Introduction 51
2. FEOL technology and materials for 3D integration 54
3. Integration of "more than Moore" functionality 57
4. Implications of 3D integration at the system level 59
5. Conclusion 61
Acknowledgments 62
References 63
1.5 Challenges to Ultralow-Power Semiconductor Device Operation 69
Francis Balestra
1. Introduction 69
2. Ultimate MOS transistors 70
3. Small slope switches 76
4. Conclusion 77
Acknowledgments 78
References 78
1.6 A Universal Nonvolatile Processing Environment 83
T. Windbacher, A. Makarov, V. Sverdlov, and S. Selberherr
1. Introduction 83
2. Universal nonvolatile processing environment 84
3. Bias-field-free spin-torque oscillator 87
4. Summary 90
Acknowledgments 90
References 90
1.7 Can MRAM (Finally) Be a Factor? 93
Jean-Pierre Nozières
1. Introduction 93
2. What is MRAM? 93
3. Current limitations for stand-alone memories 96
4. Immediate opportunities: embedded memories 98
5. Conclusion 101
References 101
1.8 Nanomanufacturing for Electronics or Optoelectronics 103
M. J. Kelly
1. Introduction 103
2. Nano-LEGO® 104
3. Tunnel devices 105
4. Split-gate transistors 106
5. Other nanoscale systems 108
6. Conclusion 108
Acknowledgments 109
References 109
II NEW MATERIALS AND NEW PHYSICS
2.1 Surface Waves Everywhere 113
M. I. Dyakonov
1. Introduction 113
2. Water waves 113
3. Surface acoustic waves 116
4. Surface plasma waves and polaritons 117
5. Plasma waves in two-dimensional structures 117
6. Electronic surface states in solids 119
7. Dyakonov surface waves (DSWs) 121
References 123
2.2 Graphene and Atom-Thick 2D Materials: Device Application Prospects 127
Sungwoo Hwang, Jinseong Heo, Min-Hyun Lee, Kyung-Eun Byun, Yeonchoo Cho,
and Seongjun Park
1. Introduction 127
2. Conventional low-dimensional systems 127
3. New atomically thin material systems 129
4. Device application of new material systems 133
5. Components in Si technology 137
6. Graphene on Ge 142
7. Conclusion 142
References 142
2.3 Computing with Coupled Relaxation Oscillators 147
N. Shukla, S. Datta, A. Parihar, and A. Raychowdhury
1. Introduction 147
2. Vanadium dioxide-based relaxation oscillators 148
3. Experimental demonstration of pairwise coupled HVFET oscillators 150
4. Computing with pairwise coupled HVFET oscillators 150
5. Associative computing using pairwise coupled oscillators 153
6. Conclusion 155
References 156
2.4 On the Field-Induced Insulator-Metal Transition in VO2 Films 157
Serge Luryi and Boris Spivak
1. Introduction 157
2. Electron concentration-induced transition 159
3. Field-induced transition in a film 161
4. Need for a ground plane 163
5. Conclusion 163
References 164
2.5 Group IV Alloys for Advanced Nano- and Optoelectronic Applications 167
Detlev Grützmacher
1. Introduction 167
2. Epitaxial growth of GeSn layers by reactive gas source epitaxy 168
3. Optically pumped GeSn laser 172
4. Potential of GeSn alloys for electronic devices 175
5. Conclusion 178
Acknowledgments 178
References 178
2.6 High Sn-Content GeSn Light Emitters for Silicon Photonics 181
D. Stange, C. Schulte-Braucks, N. von den Driesch, S. Wirths, G. Mussler,
S. Lenk, T. Stoica, S. Mantl, D. Grützmacher, D. Buca, R. Geiger, T. Zabel,
H. Sigg, J. M. Hartmann, and Z. Ikonic
1. Introduction 181
2. Experimental details of the GeSn material system 183
3. Direct bandgap GeSn light emitting diodes 185
4. Group IV GeSn microdisk laser on Si(100) 188
5. Conclusion and outlook 191
References 191
2.7 Gallium Nitride-Based Lateral and Vertical Nanowire Devices 195
Y.-W. Jo, D.-H. Son, K.-S. Im, and J.-H. Lee
1. Introduction 195
2. Crystallographic study of GaN nanowires using TMAH wet etching 196
3. ¿-shaped-gate lateral AlGaN/GaN FETs 199
4. Gate-all-around vertical GaN FETs 200
5. Conclusion 203
Acknowledgments 204
References 204
2.8 Scribing Graphene Circuits 207
N. Rodriguez, R. J. Ruiz, C. Marquez, and F. Gamiz
1. Introduction 207
2. Graphene oxide from graphite 208
3. GO exfoliation 209
4. Selective reduction of graphene oxide 210
5. Raman spectroscopy 211
6. Electrical properties of graphene oxide and reduced graphene oxide 212
7. Future perspectives 214
Acknowledgments 215
References 215
2.9 Structure and Electron Transport in Irradiated Monolayer Graphene 217
I. Shlimak, A.V. Butenko, E. Zion, V. Richter, Yu. Kaganovskii, L. Wolfson,
A. Sharoni, A. Haran, D. Naveh, E. Kogan, and M. Kaveh
1. Introduction 217
2. Samples 217
3. Raman scattering (RS) spectra 218
4. Sample resistance 220
5. Hopping magnetoresistance 225
References 229
2.10 Interplay of Coulomb Blockade and Luttinger-Liquid Physics in
Disordered 1D InAs Nanowires with Strong Spin-Orbit Coupling 233
R. Hevroni, V. Shelukhin, M. Karpovski, M. Goldstein, E. Sela, A. Palevski,
and Hadas Shtrikman
1. Introduction 233
2. Sample preparation and the experimental setup 234
3. Experimental results 234
4. Conclusion 240
Acknowledgments 240
References 240
III MICROELECTRONICS IN HEALTH, ENERGY HARVESTING, AND COMMUNICATIONS
3.1 Image-Guided Intervention and Therapy: The First Time Right 245
B. H. W. Hendriks, D. Mioni, W. Crooijmans, and H. van Houten
1. Introduction 245
2. Societal challenge: Rapid rise of cardiovascular diseases 246
3. Societal challenge: Rapid rise of cancer 252
4. Drivers of change in healthcare 256
5. Conclusion 257
Acknowledgments 257
References 257
3.2 Rewiring the Nervous System, Without Wires 259
D. A. Borton
1. Introduction 259
2. Why go wireless? 260
3. One wireless recording solution used to explore primary motor cortex
control of locomotion 262
4. Writing into the nervous system with epidural electrical stimulation of
spinal circuits effectively modulates gait 265
5. Genetic technology brings a better model to neuroscience 267
6. The wireless bridge for closed-loop control and rehabilitation 268
7. Conclusion 269
Acknowledgments 270
References 270
3.3 Nanopower-Integrated Electronics for Energy Harvesting, Conversion, and
Management 275
A. Romani, M. Dini, M. Filippi, M. Tartagni, and E. Sangiorgi
1. Introduction 275
2. Commercial ICs for micropower harvesting 276
3. State-of-the-art integrated nanocurrent power converters for
energy-harvesting applications 278
4. A multisource-integrated energy-harvesting circuit 281
5. Conclusion 286
Acknowledgments 286
References 286
3.4 Will Composite Nanomaterials Replace Piezoelectric Thin Films for
Energy Transduction Applications? 291
R. Tao, G. Ardila, R. Hinchet, A. Michard, L. Montès, and M. Mouis
1. Introduction 291
2. Thin film piezoelectric materials and applications 292
3. Individual ZnO and GaN piezoelectric nanowires: experiments and
simulations 293
4. Piezoelectric composite materials using nanowires 295
5. Conclusion 303
Acknowledgments 304
References 304
3.5 New Generation of Vertical-Cavity Surface-Emitting Lasers for Optical
Interconnects 309
N. Ledentsov Jr, V. A. Shchukin, N. N. Ledentsov, J.-R. Kropp, S. Burger,
and F. Schmidt
1. Introduction 309
2. VCSEL requirements 310
3. Optical leakage 312
4. Experiment 313
5. Simulation 316
6. Conclusion 323
Acknowledgments 323
References 323
3.6 Reconfigurable Infrared Photodetector Based on Asymmetrically Doped
Double Quantum Wells for Multicolor and Remote Temperature Sensing 327
X. Zhang, V. Mitin, G. Thomain, T. Yore, Y. Li, J. K. Choi, K. Sablon, and
A. Sergeev
1. Introduction 327
2. Fabrication of DQWIP with asymmetrical doping 328
3. Optoelectronic characterization of DQWIPs 329
4. Temperature sensing 333
5. Conclusion 334
Acknowledgments 335
References 335
3.7 Tunable Photonic Molecules for Spectral Engineering in Dense Photonic
Integration 337
M. C. M. M. Souza, G. F. M. Rezende, A. A. G. von Zuben, G. S.
Wiederhecker, N. C. Frateschi, and L. A. M. Barea
1. Introduction 337
2. Photonic molecules and their spectral features 338
3. Coupling-controlled mode-splitting: GHz-operation on a tight footprint
340
4. Reconfigurable spectral control 341
5. Toward reconfigurable mode-splitting control 343
6. Conclusion 346
Acknowledgments 346
References 347
INDEX 349
Preface xix
S. Luryi, J. M. Xu, and A. Zaslavsky
Acknowledgments xxiii
I FUTURE OF DIGITAL SILICON
1.1 Prospects of Future Si Technologies in the Data-Driven World 3
Kinam Kim and Gitae Jeong
1. Introduction 3
2. Memory - DRAM 4
3. Memory - NAND 6
4. Logic technology 8
5. CMOS image sensors 11
6. Packaging technology 13
7. Silicon photonics technology 16
8. Concluding remarks 18
Acknowledgments 18
References 18
1.2 How Lithography Enables Moore's Law 23
J. P. H. Benschop
1. Introduction 23
2. Moore's Law and the contribution of lithography 23
3. Lithography technology: past and present 24
4. Lithography technology: future 26
5. Summary 31
6. Conclusion 31
Acknowledgments 31
References 32
1.3 What Happened to Post-CMOS? 35
P. M. Solomon
1. Introduction 35
2. General constraints on speed and energy 35
3. Guidelines for success 38
4. Benchmarking and examples 40
5. Discussion 46
6. Conclusion 47
Acknowledgments 47
References 47
1.4 Three-Dimensional Integration of Ge and Two-Dimensional Materials for
One-Dimensional Devices 51
M. Östling, E. Dentoni Litta, and P.-E. Hellström
1. Introduction 51
2. FEOL technology and materials for 3D integration 54
3. Integration of "more than Moore" functionality 57
4. Implications of 3D integration at the system level 59
5. Conclusion 61
Acknowledgments 62
References 63
1.5 Challenges to Ultralow-Power Semiconductor Device Operation 69
Francis Balestra
1. Introduction 69
2. Ultimate MOS transistors 70
3. Small slope switches 76
4. Conclusion 77
Acknowledgments 78
References 78
1.6 A Universal Nonvolatile Processing Environment 83
T. Windbacher, A. Makarov, V. Sverdlov, and S. Selberherr
1. Introduction 83
2. Universal nonvolatile processing environment 84
3. Bias-field-free spin-torque oscillator 87
4. Summary 90
Acknowledgments 90
References 90
1.7 Can MRAM (Finally) Be a Factor? 93
Jean-Pierre Nozières
1. Introduction 93
2. What is MRAM? 93
3. Current limitations for stand-alone memories 96
4. Immediate opportunities: embedded memories 98
5. Conclusion 101
References 101
1.8 Nanomanufacturing for Electronics or Optoelectronics 103
M. J. Kelly
1. Introduction 103
2. Nano-LEGO® 104
3. Tunnel devices 105
4. Split-gate transistors 106
5. Other nanoscale systems 108
6. Conclusion 108
Acknowledgments 109
References 109
II NEW MATERIALS AND NEW PHYSICS
2.1 Surface Waves Everywhere 113
M. I. Dyakonov
1. Introduction 113
2. Water waves 113
3. Surface acoustic waves 116
4. Surface plasma waves and polaritons 117
5. Plasma waves in two-dimensional structures 117
6. Electronic surface states in solids 119
7. Dyakonov surface waves (DSWs) 121
References 123
2.2 Graphene and Atom-Thick 2D Materials: Device Application Prospects 127
Sungwoo Hwang, Jinseong Heo, Min-Hyun Lee, Kyung-Eun Byun, Yeonchoo Cho,
and Seongjun Park
1. Introduction 127
2. Conventional low-dimensional systems 127
3. New atomically thin material systems 129
4. Device application of new material systems 133
5. Components in Si technology 137
6. Graphene on Ge 142
7. Conclusion 142
References 142
2.3 Computing with Coupled Relaxation Oscillators 147
N. Shukla, S. Datta, A. Parihar, and A. Raychowdhury
1. Introduction 147
2. Vanadium dioxide-based relaxation oscillators 148
3. Experimental demonstration of pairwise coupled HVFET oscillators 150
4. Computing with pairwise coupled HVFET oscillators 150
5. Associative computing using pairwise coupled oscillators 153
6. Conclusion 155
References 156
2.4 On the Field-Induced Insulator-Metal Transition in VO2 Films 157
Serge Luryi and Boris Spivak
1. Introduction 157
2. Electron concentration-induced transition 159
3. Field-induced transition in a film 161
4. Need for a ground plane 163
5. Conclusion 163
References 164
2.5 Group IV Alloys for Advanced Nano- and Optoelectronic Applications 167
Detlev Grützmacher
1. Introduction 167
2. Epitaxial growth of GeSn layers by reactive gas source epitaxy 168
3. Optically pumped GeSn laser 172
4. Potential of GeSn alloys for electronic devices 175
5. Conclusion 178
Acknowledgments 178
References 178
2.6 High Sn-Content GeSn Light Emitters for Silicon Photonics 181
D. Stange, C. Schulte-Braucks, N. von den Driesch, S. Wirths, G. Mussler,
S. Lenk, T. Stoica, S. Mantl, D. Grützmacher, D. Buca, R. Geiger, T. Zabel,
H. Sigg, J. M. Hartmann, and Z. Ikonic
1. Introduction 181
2. Experimental details of the GeSn material system 183
3. Direct bandgap GeSn light emitting diodes 185
4. Group IV GeSn microdisk laser on Si(100) 188
5. Conclusion and outlook 191
References 191
2.7 Gallium Nitride-Based Lateral and Vertical Nanowire Devices 195
Y.-W. Jo, D.-H. Son, K.-S. Im, and J.-H. Lee
1. Introduction 195
2. Crystallographic study of GaN nanowires using TMAH wet etching 196
3. ¿-shaped-gate lateral AlGaN/GaN FETs 199
4. Gate-all-around vertical GaN FETs 200
5. Conclusion 203
Acknowledgments 204
References 204
2.8 Scribing Graphene Circuits 207
N. Rodriguez, R. J. Ruiz, C. Marquez, and F. Gamiz
1. Introduction 207
2. Graphene oxide from graphite 208
3. GO exfoliation 209
4. Selective reduction of graphene oxide 210
5. Raman spectroscopy 211
6. Electrical properties of graphene oxide and reduced graphene oxide 212
7. Future perspectives 214
Acknowledgments 215
References 215
2.9 Structure and Electron Transport in Irradiated Monolayer Graphene 217
I. Shlimak, A.V. Butenko, E. Zion, V. Richter, Yu. Kaganovskii, L. Wolfson,
A. Sharoni, A. Haran, D. Naveh, E. Kogan, and M. Kaveh
1. Introduction 217
2. Samples 217
3. Raman scattering (RS) spectra 218
4. Sample resistance 220
5. Hopping magnetoresistance 225
References 229
2.10 Interplay of Coulomb Blockade and Luttinger-Liquid Physics in
Disordered 1D InAs Nanowires with Strong Spin-Orbit Coupling 233
R. Hevroni, V. Shelukhin, M. Karpovski, M. Goldstein, E. Sela, A. Palevski,
and Hadas Shtrikman
1. Introduction 233
2. Sample preparation and the experimental setup 234
3. Experimental results 234
4. Conclusion 240
Acknowledgments 240
References 240
III MICROELECTRONICS IN HEALTH, ENERGY HARVESTING, AND COMMUNICATIONS
3.1 Image-Guided Intervention and Therapy: The First Time Right 245
B. H. W. Hendriks, D. Mioni, W. Crooijmans, and H. van Houten
1. Introduction 245
2. Societal challenge: Rapid rise of cardiovascular diseases 246
3. Societal challenge: Rapid rise of cancer 252
4. Drivers of change in healthcare 256
5. Conclusion 257
Acknowledgments 257
References 257
3.2 Rewiring the Nervous System, Without Wires 259
D. A. Borton
1. Introduction 259
2. Why go wireless? 260
3. One wireless recording solution used to explore primary motor cortex
control of locomotion 262
4. Writing into the nervous system with epidural electrical stimulation of
spinal circuits effectively modulates gait 265
5. Genetic technology brings a better model to neuroscience 267
6. The wireless bridge for closed-loop control and rehabilitation 268
7. Conclusion 269
Acknowledgments 270
References 270
3.3 Nanopower-Integrated Electronics for Energy Harvesting, Conversion, and
Management 275
A. Romani, M. Dini, M. Filippi, M. Tartagni, and E. Sangiorgi
1. Introduction 275
2. Commercial ICs for micropower harvesting 276
3. State-of-the-art integrated nanocurrent power converters for
energy-harvesting applications 278
4. A multisource-integrated energy-harvesting circuit 281
5. Conclusion 286
Acknowledgments 286
References 286
3.4 Will Composite Nanomaterials Replace Piezoelectric Thin Films for
Energy Transduction Applications? 291
R. Tao, G. Ardila, R. Hinchet, A. Michard, L. Montès, and M. Mouis
1. Introduction 291
2. Thin film piezoelectric materials and applications 292
3. Individual ZnO and GaN piezoelectric nanowires: experiments and
simulations 293
4. Piezoelectric composite materials using nanowires 295
5. Conclusion 303
Acknowledgments 304
References 304
3.5 New Generation of Vertical-Cavity Surface-Emitting Lasers for Optical
Interconnects 309
N. Ledentsov Jr, V. A. Shchukin, N. N. Ledentsov, J.-R. Kropp, S. Burger,
and F. Schmidt
1. Introduction 309
2. VCSEL requirements 310
3. Optical leakage 312
4. Experiment 313
5. Simulation 316
6. Conclusion 323
Acknowledgments 323
References 323
3.6 Reconfigurable Infrared Photodetector Based on Asymmetrically Doped
Double Quantum Wells for Multicolor and Remote Temperature Sensing 327
X. Zhang, V. Mitin, G. Thomain, T. Yore, Y. Li, J. K. Choi, K. Sablon, and
A. Sergeev
1. Introduction 327
2. Fabrication of DQWIP with asymmetrical doping 328
3. Optoelectronic characterization of DQWIPs 329
4. Temperature sensing 333
5. Conclusion 334
Acknowledgments 335
References 335
3.7 Tunable Photonic Molecules for Spectral Engineering in Dense Photonic
Integration 337
M. C. M. M. Souza, G. F. M. Rezende, A. A. G. von Zuben, G. S.
Wiederhecker, N. C. Frateschi, and L. A. M. Barea
1. Introduction 337
2. Photonic molecules and their spectral features 338
3. Coupling-controlled mode-splitting: GHz-operation on a tight footprint
340
4. Reconfigurable spectral control 341
5. Toward reconfigurable mode-splitting control 343
6. Conclusion 346
Acknowledgments 346
References 347
INDEX 349