Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Gap junction channels are a group of intercellular channels expressed in tissues and organs to synchronize many physiological processes. Pannexin channels are a family of closely related large-pore channels virtually unknown a decade ago. The field of connexin and pannexin research has recently exploded and became one of the most active areas of research. Numerous novel approaches and techniques have been developed, but there is no single book to dedicate on the unique techniques and protocols for the research on these large pore channels. The authors plan a book to focus on recent…mehr
Gap junction channels are a group of intercellular channels expressed in tissues and organs to synchronize many physiological processes. Pannexin channels are a family of closely related large-pore channels virtually unknown a decade ago. The field of connexin and pannexin research has recently exploded and became one of the most active areas of research. Numerous novel approaches and techniques have been developed, but there is no single book to dedicate on the unique techniques and protocols for the research on these large pore channels. The authors plan a book to focus on recent state-of-the-art techniques and protocols in various aspects of this diverse research field.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Donglin Bai received his Ph.D. from University of Cambridge, U.K. (1994). He then moved to Canada and worked on neurotransmitter receptors (GABA, NMDA, AMPA, noradrenaline, angiotensin) in Loeb Research Institute (Ottawa), Department of Physiology (Toronto) and Samuel Lunenfeld Research Institute (Toronto) as a postdoctoral fellow. In 2002 he was recruited as an Assistant Professor at Department of Physiology and Pharmacology, the University of Western Ontario. He is currently a tenured Associate Professor in the same university. His current research interests are on the physiology of gap junction channels, including gap junction channel docking, single channel conductance and gating properties. He is also interested in revealing how gap junction gene mutants linking to human diseases (cardiac arrhythmias, hypomyelination, cataracts, deafness and skin diseases) and developing strategies of rescuing the mutants. He received grants support from the following Canadian funding agencies: CIHR, CRC, NSERC, HSFC and ERA. Dr. Juan C. Sáez received his PhD in neuroscience from Albert Einstein College of Medicine (AECOM), New York, New York, in 1986. He stayed for one year as an instructor in the Department of Neuroscience of AECOM, and then, he became an assistant professor in the same department. In 1993, he joined the Physiology Department of the Pontificia Universidad Católica de Chile, Santiago, Chile, where he has been a professor since 2003. His current research interest is understanding the regulation and the function of connexin- and pannexin-based channels in different cell types, including the cells of the nervous system, the immune system, and the gastrointestinal system and, more recently, on skeletal muscles. He has also characterized biophysical features of the mentioned channels. Recently, he has also used protocols for identifying highly selective inhibitors of connexin hemichannels without an effect on gap junction channels and with potent anti-inflammatory activity to treat chronic diseases. He has been continuously funded through the National Institutes of Health and different foundations of the Chilean government.
Inhaltsangabe
Gap junction channels. Bioinformatics analysis of connexin genes. Structural approaches on gap junction channels. Fluorescent label of connexins. Functional study of gap junction channel gating. Quantitative measurement of dye transfer. Permeability. Pharmacology of gap junction channels. Gap junction mimetic piptides. Gap junction hemichannels. Dye uptake and ATP release. Functional study of hemichannel current. Connexin purification and reconstitution in lipid bilayers. Hemichannel function in the ovary. Pannexin channels. Functional study pannexin channels. Pannexin channels in vasculature. Pharmacology of pannexin channels. Dye uptake and ATP release.
Gap junction channels. Bioinformatics analysis of connexin genes. Structural approaches on gap junction channels. Fluorescent label of connexins. Functional study of gap junction channel gating. Quantitative measurement of dye transfer. Permeability. Pharmacology of gap junction channels. Gap junction mimetic piptides. Gap junction hemichannels. Dye uptake and ATP release. Functional study of hemichannel current. Connexin purification and reconstitution in lipid bilayers. Hemichannel function in the ovary. Pannexin channels. Functional study pannexin channels. Pannexin channels in vasculature. Pharmacology of pannexin channels. Dye uptake and ATP release.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826