Gas Hydrates 2 (eBook, ePUB)
Geoscience Issues and Potential Industrial Applications
Redaktion: Ruffine, Livio; Desmedt, Arnaud; Broseta, Daniel
139,99 €
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
139,99 €
Als Download kaufen
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Gas Hydrates 2 (eBook, ePUB)
Geoscience Issues and Potential Industrial Applications
Redaktion: Ruffine, Livio; Desmedt, Arnaud; Broseta, Daniel
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Gas hydrates in their natural environment and for potential industrial applications (Volume 2). Das E-Book Gas Hydrates 2 wird angeboten von John Wiley & Sons und wurde mit folgenden Begriffen kategorisiert: Energie, Energy, Erdgas u. Erdöl, Natural Gas & Petroleum Products
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 16.44MB
Andere Kunden interessierten sich auch für
- Gas Hydrates 1 (eBook, ePUB)139,99 €
- Qiang BaiFlexible Pipes (eBook, ePUB)225,99 €
- Vaclav SmilNatural Gas (eBook, ePUB)30,99 €
- Fred AminzadehReservoir Characterization (eBook, ePUB)197,99 €
- A. Kayode CokerPetroleum Refining Design and Applications Handbook, Volume 5 (eBook, ePUB)240,99 €
- Y. N. GrigorenkoPetroleum Accumulation Zones on Continental Margins (eBook, ePUB)186,99 €
- M. R. IslamGreen Petroleum (eBook, ePUB)144,99 €
-
-
-
Gas hydrates in their natural environment and for potential industrial applications (Volume 2). Das E-Book Gas Hydrates 2 wird angeboten von John Wiley & Sons und wurde mit folgenden Begriffen kategorisiert: Energie, Energy, Erdgas u. Erdöl, Natural Gas & Petroleum Products
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-IEEE Press
- Seitenzahl: 384
- Erscheinungstermin: 16. April 2018
- Englisch
- ISBN-13: 9781119522478
- Artikelnr.: 53058728
- Verlag: Wiley-IEEE Press
- Seitenzahl: 384
- Erscheinungstermin: 16. April 2018
- Englisch
- ISBN-13: 9781119522478
- Artikelnr.: 53058728
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Broseta Daniel, University of Pau et des Pays de l'Adour. Ruffine Livio, Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer).
Preface xi
Livio RUFFINE, Daniel BROSETA and Arnaud DESMEDT
Part 1 Field study and laboratory experiments of hydrate-bearing sediments
1
Introduction to Part 1 3
Livio RUFFINE
Chapter 1 Water Column Acoustics:Remote Detection of Gas Seeps 11
Carla SCALABRIN and Stéphanie DUPRÉ
1.1 Introduction 11
1.2 Principle of the measurement 14
1.2.1 Instrumentations 14
1.2.2 Qualitative and quantitative measurements 14
1.3 Bibliography 18
Chapter 2 Geophysical Approach 21
Bruno MARSSET
2.1 Introduction 21
2.2 Overview 21
2.3 Seismic processing 23
2.3.1 Positioning phase 23
2.3.2 Preprocessing phase 24
2.3.3 Processing phase 25
2.4 Example of gas hydrate exploration: the SYSIF instrument 28
2.5 Bibliography 29
Chapter 3 Hydrate Seismic Detection 31
Stephan KER
3.1 Wave velocities of hydrate-bearing sediments 32
3.1.1 Empirical equations 32
3.1.2 Effective medium theories 33
3.2 Bibliography 34
Chapter 4 Geomorphology of Gas Hydrate-Bearing Pockmark 37
Vincent RIBOULOT
4.1 Introduction 37
4.2 Generalities about pockmarks 38
4.3 Impact of gas hydrate on seafloor deformation 39
4.4 Morphological evolution of gas hydrate pockmarks 42
4.5 Distinction between gas hydrate-bearing and gas hydrate-free pockmarks
44
4.6 Bibliography 45
Chapter 5 Geotechnics 49
Sébastien GARZIGLIA
5.1 Introduction 49
5.2 The Penfeld system 50
5.2.1 Piezocone and acoustic soundings in gas hydrate-bearing sediments 52
5.3 Bibliography 54
Chapter 6 Geochemistry 57
Livio RUFFINE, Sandrine CHÉRON, Emmanuel PONZEVERA, Christophe
BRANDILY,Patrice WOERTHER, Vivien GUYADER, Audrey BOISSIER, Jean-Pierre
DONVAL and Germain BAYON
6.1 Introduction 57
6.2 Sampling geological materials from hydrate-bearing sediment 58
6.2.1 The Calypso corer 58
6.2.2 Sampling of sediments, carbonates and pore fluids from the Calypso
corer 62
6.3 Analyses 65
6.3.1 Sediment and carbonate 65
6.3.2 Gases 75
6.3.3 Pore water 78
6.4 Bibliography 82
Chapter 7 Benthic Ecosystem Study 85
Karine OLU, Laurent TOFFIN and Christophe BRANDILY
7.1 Microbial ecology in hydrate-bearing sediments 85
7.1.1 Study sites containing hydrate-bearing sediments 85
7.1.2 Sampling strategy for microbiology study of hydrate-bearing sediments
86
7.1.3 Laboratory analyses 87
7.2 Macrobial ecology studies at cold seeps 91
7.2.1 Mapping biogenic habitats 93
7.2.2 Chemical characterization of biogenic habitats 97
7.2.3 Sampling in biogenic habitats 103
7.2.4 Fauna 106
7.2.5 Symbiosis studies 110
7.3 Bibliography 111
Chapter 8 Physicochemical Properties of Gas Hydrate-bearing Sediments 121
Ludovic LEGOIX, Elke KOSSEL, Christian DEUSNER, Livio RUFFINE and Matthias
HAECKEL
8.1 Introduction 121
8.2 Gas hydrate formation and dissociation 124
8.3 Fluid transport in gas hydrate-bearing sediments 128
8.4 Thermal and electrical properties of gas hydrate-bearing sediments 133
8.5 Distribution and occurrence of gas hydrates in sediments 137
8.6 Experimental investigation of dynamic processes in gas hydrate-bearing
sediments 139
8.7 Bibliography 149
Chapter 9 Small-scale Laboratory Studies of Key Geotechnical Properties
which are Not Possible to Measure from In Situ Deployed Technologies 165
Sébastien GARZIGLIA
9.1 Introduction 165
9.2 Influence of gas hydrates on the stiffness and strength properties of
sediments 166
9.2.1 Elastic or small-strain stiffness properties 166
9.2.2 Large-strain stiffness and strength properties 168
9.2.3 Geotechnical consequences of gas hydrate destabilization 170
9.3 Bibliography 172
Part 2 Modeling of Gas Hydrate-bearing Sediments and Case Studies 177
Chapter 10 Geomechanical Aspects 179
Assaf KLAR and Shun UCHIDA
10.1 Introduction 179
10.2 Geomechanical characteristics 179
10.3 Constitutive models for continuum mechanics frameworks 181
10.3.1 Stress-strain formulation for hydrate-bearing sediments 183
10.3.2 DEM representation 191
10.4 Coupled formulation 195
10.5 Numerical simulations of the Nankai 2013 gas production test 202
10.5.1 The Nankai gas production test overview 202
10.5.2 Modeling procedure 203
10.5.3 History matching of the 2013 Nankai production test 210
10.5.4 Thermo-hydro-mechanical studies during the 2013 Nankai gas
production test 211
10.6 Concluding remarks 213
10.7 Bibliography 214
Chapter 11 Geochemical Aspects 219
Wei-Li HONG and Malgorzata PESZYNSKA
11.1 Introduction 219
11.2 Basic principles 220
11.2.1 Transport in the aqueous phase by advection and diffusion 220
11.2.2 Numerical scheme for the advection-diffusion problem 222
11.2.3 Transport of methane in aqueous phase in the presence of gas hydrate
phase 223
11.2.4 Transport of methane and salt species, with hydrate presence 225
11.3 Model framework 226
11.4 Model validation and sensitivity tests 230
11.5 Model application 230
11.6 Concluding remarks 239
11.7 Acknowledgments 239
11.8 Bibliography 239
Part 3 Geoscience and Industrial Applications 243
Chapter 12 Biogeochemical Dynamics of the Giant Pockmark Regab 245
Alexis DE PRUNELÉ, Karine OLU, Livio RUFFINE, Hélène ONDRÉAS,Jean-Claude
CAPRAIS, Germain BAYON, Anne-Sophie ALIX, Julie Le BRUCHEC and Louis GÉLI
12.1 Introduction 245
12.2 Location of the pockmark 246
12.2.1 The pockmark Regab: hydrocarbon emission and morphology 247
12.3 Megafauna distribution on Regab pockmark in relation to fluid
chemistry 250
12.3.1 Megafauna distribution on the Regab pockmark 250
12.3.2 Mytilid habitats 252
12.3.3 Bacterial mat habitat 255
12.3.4 Vesicomyid habitats 258
12.4 General conclusion on the megafauna distribution on the Regab pockmark
in relation to fluid chemistry 263
12.5 Bibliography 264
Chapter 13 Roles of Gas Hydrates for CO2 Geological Storage Purposes 267
André BURNOL
13.1 Introduction 267
13.2 Hydrate trapping of CO2 in subsurfaces (onshore, offshore and deep
offshore cases) 269
13.2.1 Case of migration of CO2 within the overburden 269
13.2.2 Case of natural gas hydrates exploitation using CO2 injection 270
13.2.3 Role of mixed gas hydrates in the "deep offshore" CO2 storage option
272
13.3 CO2 deep offshore storage capacity in the French and Spanish EEZs 276
13.4 Summary and prospects 281
13.5 Bibliography 281
Chapter 14 Hydrate-Based Removal of CO2 from CH4 + CO2 Gas Streams 285
Daniel BROSETA, Christophe DICHARRY and Jean-Philippe TORRÉ
14.1 Introduction 285
14.2 Laboratory experiments of gas capture and separation by means of gas
hydrates 290
14.2.1 Batch experiments 292
14.2.2 Semibatch experiments 295
14.2.3 Continuous separation experiments 295
14.3 Metrics of CO2 separation 295
14.4 Results from experiments of CO2 removal from CO2/CH4 gas mixtures 300
14.4.1 Pure water and water with surfactant additives 300
14.4.2 THF and other sII hydrate-forming additives 301
14.4.3 TBAB, TBPB and other semiclathrate-forming additives 303
14.5 Routes to enhance the removal of CO2 from CO2/CH4 gas mixtures 307
14.6 Concluding remarks 309
14.7 Bibliography 309
Chapter 15 Use of Hydrates for Cold Storage and Distribution in
Refrigeration and Air-Conditioning Applications 315
Anthony DELAHAYE, Laurence FOURNAISON and Didier DALMAZZONE
15.1 Introduction 315
15.2 Hydrate systems for cool storage and distribution 317
15.2.1 Refrigerant gas hydrate applied to cool storage 317
15.2.2 CO2 hydrates applied to cool storage and distribution 318
15.2.3 Quaternary salt hydrates for cool storage and distribution 319
15.2.4 Other hydrates applied to cool storage and distribution 320
15.3 Criteria for use of hydrates in refrigeration 321
15.3.1 Thermodynamic criterion 322
15.3.2 Flow criterion 325
15.3.3 Thermal criterion 331
15.3.4 Kinetic criterion 332
15.3.5 Energy criterion 334
15.4 Hydrate applications in refrigeration and air conditioning 335
15.4.1 Slurry generation methods 335
15.4.2 Examples of hydrate-based refrigeration systems 336
15.5 Conclusion 341
15.6 Bibliography 342
List of Authors 359
Index 363
Livio RUFFINE, Daniel BROSETA and Arnaud DESMEDT
Part 1 Field study and laboratory experiments of hydrate-bearing sediments
1
Introduction to Part 1 3
Livio RUFFINE
Chapter 1 Water Column Acoustics:Remote Detection of Gas Seeps 11
Carla SCALABRIN and Stéphanie DUPRÉ
1.1 Introduction 11
1.2 Principle of the measurement 14
1.2.1 Instrumentations 14
1.2.2 Qualitative and quantitative measurements 14
1.3 Bibliography 18
Chapter 2 Geophysical Approach 21
Bruno MARSSET
2.1 Introduction 21
2.2 Overview 21
2.3 Seismic processing 23
2.3.1 Positioning phase 23
2.3.2 Preprocessing phase 24
2.3.3 Processing phase 25
2.4 Example of gas hydrate exploration: the SYSIF instrument 28
2.5 Bibliography 29
Chapter 3 Hydrate Seismic Detection 31
Stephan KER
3.1 Wave velocities of hydrate-bearing sediments 32
3.1.1 Empirical equations 32
3.1.2 Effective medium theories 33
3.2 Bibliography 34
Chapter 4 Geomorphology of Gas Hydrate-Bearing Pockmark 37
Vincent RIBOULOT
4.1 Introduction 37
4.2 Generalities about pockmarks 38
4.3 Impact of gas hydrate on seafloor deformation 39
4.4 Morphological evolution of gas hydrate pockmarks 42
4.5 Distinction between gas hydrate-bearing and gas hydrate-free pockmarks
44
4.6 Bibliography 45
Chapter 5 Geotechnics 49
Sébastien GARZIGLIA
5.1 Introduction 49
5.2 The Penfeld system 50
5.2.1 Piezocone and acoustic soundings in gas hydrate-bearing sediments 52
5.3 Bibliography 54
Chapter 6 Geochemistry 57
Livio RUFFINE, Sandrine CHÉRON, Emmanuel PONZEVERA, Christophe
BRANDILY,Patrice WOERTHER, Vivien GUYADER, Audrey BOISSIER, Jean-Pierre
DONVAL and Germain BAYON
6.1 Introduction 57
6.2 Sampling geological materials from hydrate-bearing sediment 58
6.2.1 The Calypso corer 58
6.2.2 Sampling of sediments, carbonates and pore fluids from the Calypso
corer 62
6.3 Analyses 65
6.3.1 Sediment and carbonate 65
6.3.2 Gases 75
6.3.3 Pore water 78
6.4 Bibliography 82
Chapter 7 Benthic Ecosystem Study 85
Karine OLU, Laurent TOFFIN and Christophe BRANDILY
7.1 Microbial ecology in hydrate-bearing sediments 85
7.1.1 Study sites containing hydrate-bearing sediments 85
7.1.2 Sampling strategy for microbiology study of hydrate-bearing sediments
86
7.1.3 Laboratory analyses 87
7.2 Macrobial ecology studies at cold seeps 91
7.2.1 Mapping biogenic habitats 93
7.2.2 Chemical characterization of biogenic habitats 97
7.2.3 Sampling in biogenic habitats 103
7.2.4 Fauna 106
7.2.5 Symbiosis studies 110
7.3 Bibliography 111
Chapter 8 Physicochemical Properties of Gas Hydrate-bearing Sediments 121
Ludovic LEGOIX, Elke KOSSEL, Christian DEUSNER, Livio RUFFINE and Matthias
HAECKEL
8.1 Introduction 121
8.2 Gas hydrate formation and dissociation 124
8.3 Fluid transport in gas hydrate-bearing sediments 128
8.4 Thermal and electrical properties of gas hydrate-bearing sediments 133
8.5 Distribution and occurrence of gas hydrates in sediments 137
8.6 Experimental investigation of dynamic processes in gas hydrate-bearing
sediments 139
8.7 Bibliography 149
Chapter 9 Small-scale Laboratory Studies of Key Geotechnical Properties
which are Not Possible to Measure from In Situ Deployed Technologies 165
Sébastien GARZIGLIA
9.1 Introduction 165
9.2 Influence of gas hydrates on the stiffness and strength properties of
sediments 166
9.2.1 Elastic or small-strain stiffness properties 166
9.2.2 Large-strain stiffness and strength properties 168
9.2.3 Geotechnical consequences of gas hydrate destabilization 170
9.3 Bibliography 172
Part 2 Modeling of Gas Hydrate-bearing Sediments and Case Studies 177
Chapter 10 Geomechanical Aspects 179
Assaf KLAR and Shun UCHIDA
10.1 Introduction 179
10.2 Geomechanical characteristics 179
10.3 Constitutive models for continuum mechanics frameworks 181
10.3.1 Stress-strain formulation for hydrate-bearing sediments 183
10.3.2 DEM representation 191
10.4 Coupled formulation 195
10.5 Numerical simulations of the Nankai 2013 gas production test 202
10.5.1 The Nankai gas production test overview 202
10.5.2 Modeling procedure 203
10.5.3 History matching of the 2013 Nankai production test 210
10.5.4 Thermo-hydro-mechanical studies during the 2013 Nankai gas
production test 211
10.6 Concluding remarks 213
10.7 Bibliography 214
Chapter 11 Geochemical Aspects 219
Wei-Li HONG and Malgorzata PESZYNSKA
11.1 Introduction 219
11.2 Basic principles 220
11.2.1 Transport in the aqueous phase by advection and diffusion 220
11.2.2 Numerical scheme for the advection-diffusion problem 222
11.2.3 Transport of methane in aqueous phase in the presence of gas hydrate
phase 223
11.2.4 Transport of methane and salt species, with hydrate presence 225
11.3 Model framework 226
11.4 Model validation and sensitivity tests 230
11.5 Model application 230
11.6 Concluding remarks 239
11.7 Acknowledgments 239
11.8 Bibliography 239
Part 3 Geoscience and Industrial Applications 243
Chapter 12 Biogeochemical Dynamics of the Giant Pockmark Regab 245
Alexis DE PRUNELÉ, Karine OLU, Livio RUFFINE, Hélène ONDRÉAS,Jean-Claude
CAPRAIS, Germain BAYON, Anne-Sophie ALIX, Julie Le BRUCHEC and Louis GÉLI
12.1 Introduction 245
12.2 Location of the pockmark 246
12.2.1 The pockmark Regab: hydrocarbon emission and morphology 247
12.3 Megafauna distribution on Regab pockmark in relation to fluid
chemistry 250
12.3.1 Megafauna distribution on the Regab pockmark 250
12.3.2 Mytilid habitats 252
12.3.3 Bacterial mat habitat 255
12.3.4 Vesicomyid habitats 258
12.4 General conclusion on the megafauna distribution on the Regab pockmark
in relation to fluid chemistry 263
12.5 Bibliography 264
Chapter 13 Roles of Gas Hydrates for CO2 Geological Storage Purposes 267
André BURNOL
13.1 Introduction 267
13.2 Hydrate trapping of CO2 in subsurfaces (onshore, offshore and deep
offshore cases) 269
13.2.1 Case of migration of CO2 within the overburden 269
13.2.2 Case of natural gas hydrates exploitation using CO2 injection 270
13.2.3 Role of mixed gas hydrates in the "deep offshore" CO2 storage option
272
13.3 CO2 deep offshore storage capacity in the French and Spanish EEZs 276
13.4 Summary and prospects 281
13.5 Bibliography 281
Chapter 14 Hydrate-Based Removal of CO2 from CH4 + CO2 Gas Streams 285
Daniel BROSETA, Christophe DICHARRY and Jean-Philippe TORRÉ
14.1 Introduction 285
14.2 Laboratory experiments of gas capture and separation by means of gas
hydrates 290
14.2.1 Batch experiments 292
14.2.2 Semibatch experiments 295
14.2.3 Continuous separation experiments 295
14.3 Metrics of CO2 separation 295
14.4 Results from experiments of CO2 removal from CO2/CH4 gas mixtures 300
14.4.1 Pure water and water with surfactant additives 300
14.4.2 THF and other sII hydrate-forming additives 301
14.4.3 TBAB, TBPB and other semiclathrate-forming additives 303
14.5 Routes to enhance the removal of CO2 from CO2/CH4 gas mixtures 307
14.6 Concluding remarks 309
14.7 Bibliography 309
Chapter 15 Use of Hydrates for Cold Storage and Distribution in
Refrigeration and Air-Conditioning Applications 315
Anthony DELAHAYE, Laurence FOURNAISON and Didier DALMAZZONE
15.1 Introduction 315
15.2 Hydrate systems for cool storage and distribution 317
15.2.1 Refrigerant gas hydrate applied to cool storage 317
15.2.2 CO2 hydrates applied to cool storage and distribution 318
15.2.3 Quaternary salt hydrates for cool storage and distribution 319
15.2.4 Other hydrates applied to cool storage and distribution 320
15.3 Criteria for use of hydrates in refrigeration 321
15.3.1 Thermodynamic criterion 322
15.3.2 Flow criterion 325
15.3.3 Thermal criterion 331
15.3.4 Kinetic criterion 332
15.3.5 Energy criterion 334
15.4 Hydrate applications in refrigeration and air conditioning 335
15.4.1 Slurry generation methods 335
15.4.2 Examples of hydrate-based refrigeration systems 336
15.5 Conclusion 341
15.6 Bibliography 342
List of Authors 359
Index 363
Preface xi
Livio RUFFINE, Daniel BROSETA and Arnaud DESMEDT
Part 1 Field study and laboratory experiments of hydrate-bearing sediments
1
Introduction to Part 1 3
Livio RUFFINE
Chapter 1 Water Column Acoustics:Remote Detection of Gas Seeps 11
Carla SCALABRIN and Stéphanie DUPRÉ
1.1 Introduction 11
1.2 Principle of the measurement 14
1.2.1 Instrumentations 14
1.2.2 Qualitative and quantitative measurements 14
1.3 Bibliography 18
Chapter 2 Geophysical Approach 21
Bruno MARSSET
2.1 Introduction 21
2.2 Overview 21
2.3 Seismic processing 23
2.3.1 Positioning phase 23
2.3.2 Preprocessing phase 24
2.3.3 Processing phase 25
2.4 Example of gas hydrate exploration: the SYSIF instrument 28
2.5 Bibliography 29
Chapter 3 Hydrate Seismic Detection 31
Stephan KER
3.1 Wave velocities of hydrate-bearing sediments 32
3.1.1 Empirical equations 32
3.1.2 Effective medium theories 33
3.2 Bibliography 34
Chapter 4 Geomorphology of Gas Hydrate-Bearing Pockmark 37
Vincent RIBOULOT
4.1 Introduction 37
4.2 Generalities about pockmarks 38
4.3 Impact of gas hydrate on seafloor deformation 39
4.4 Morphological evolution of gas hydrate pockmarks 42
4.5 Distinction between gas hydrate-bearing and gas hydrate-free pockmarks
44
4.6 Bibliography 45
Chapter 5 Geotechnics 49
Sébastien GARZIGLIA
5.1 Introduction 49
5.2 The Penfeld system 50
5.2.1 Piezocone and acoustic soundings in gas hydrate-bearing sediments 52
5.3 Bibliography 54
Chapter 6 Geochemistry 57
Livio RUFFINE, Sandrine CHÉRON, Emmanuel PONZEVERA, Christophe
BRANDILY,Patrice WOERTHER, Vivien GUYADER, Audrey BOISSIER, Jean-Pierre
DONVAL and Germain BAYON
6.1 Introduction 57
6.2 Sampling geological materials from hydrate-bearing sediment 58
6.2.1 The Calypso corer 58
6.2.2 Sampling of sediments, carbonates and pore fluids from the Calypso
corer 62
6.3 Analyses 65
6.3.1 Sediment and carbonate 65
6.3.2 Gases 75
6.3.3 Pore water 78
6.4 Bibliography 82
Chapter 7 Benthic Ecosystem Study 85
Karine OLU, Laurent TOFFIN and Christophe BRANDILY
7.1 Microbial ecology in hydrate-bearing sediments 85
7.1.1 Study sites containing hydrate-bearing sediments 85
7.1.2 Sampling strategy for microbiology study of hydrate-bearing sediments
86
7.1.3 Laboratory analyses 87
7.2 Macrobial ecology studies at cold seeps 91
7.2.1 Mapping biogenic habitats 93
7.2.2 Chemical characterization of biogenic habitats 97
7.2.3 Sampling in biogenic habitats 103
7.2.4 Fauna 106
7.2.5 Symbiosis studies 110
7.3 Bibliography 111
Chapter 8 Physicochemical Properties of Gas Hydrate-bearing Sediments 121
Ludovic LEGOIX, Elke KOSSEL, Christian DEUSNER, Livio RUFFINE and Matthias
HAECKEL
8.1 Introduction 121
8.2 Gas hydrate formation and dissociation 124
8.3 Fluid transport in gas hydrate-bearing sediments 128
8.4 Thermal and electrical properties of gas hydrate-bearing sediments 133
8.5 Distribution and occurrence of gas hydrates in sediments 137
8.6 Experimental investigation of dynamic processes in gas hydrate-bearing
sediments 139
8.7 Bibliography 149
Chapter 9 Small-scale Laboratory Studies of Key Geotechnical Properties
which are Not Possible to Measure from In Situ Deployed Technologies 165
Sébastien GARZIGLIA
9.1 Introduction 165
9.2 Influence of gas hydrates on the stiffness and strength properties of
sediments 166
9.2.1 Elastic or small-strain stiffness properties 166
9.2.2 Large-strain stiffness and strength properties 168
9.2.3 Geotechnical consequences of gas hydrate destabilization 170
9.3 Bibliography 172
Part 2 Modeling of Gas Hydrate-bearing Sediments and Case Studies 177
Chapter 10 Geomechanical Aspects 179
Assaf KLAR and Shun UCHIDA
10.1 Introduction 179
10.2 Geomechanical characteristics 179
10.3 Constitutive models for continuum mechanics frameworks 181
10.3.1 Stress-strain formulation for hydrate-bearing sediments 183
10.3.2 DEM representation 191
10.4 Coupled formulation 195
10.5 Numerical simulations of the Nankai 2013 gas production test 202
10.5.1 The Nankai gas production test overview 202
10.5.2 Modeling procedure 203
10.5.3 History matching of the 2013 Nankai production test 210
10.5.4 Thermo-hydro-mechanical studies during the 2013 Nankai gas
production test 211
10.6 Concluding remarks 213
10.7 Bibliography 214
Chapter 11 Geochemical Aspects 219
Wei-Li HONG and Malgorzata PESZYNSKA
11.1 Introduction 219
11.2 Basic principles 220
11.2.1 Transport in the aqueous phase by advection and diffusion 220
11.2.2 Numerical scheme for the advection-diffusion problem 222
11.2.3 Transport of methane in aqueous phase in the presence of gas hydrate
phase 223
11.2.4 Transport of methane and salt species, with hydrate presence 225
11.3 Model framework 226
11.4 Model validation and sensitivity tests 230
11.5 Model application 230
11.6 Concluding remarks 239
11.7 Acknowledgments 239
11.8 Bibliography 239
Part 3 Geoscience and Industrial Applications 243
Chapter 12 Biogeochemical Dynamics of the Giant Pockmark Regab 245
Alexis DE PRUNELÉ, Karine OLU, Livio RUFFINE, Hélène ONDRÉAS,Jean-Claude
CAPRAIS, Germain BAYON, Anne-Sophie ALIX, Julie Le BRUCHEC and Louis GÉLI
12.1 Introduction 245
12.2 Location of the pockmark 246
12.2.1 The pockmark Regab: hydrocarbon emission and morphology 247
12.3 Megafauna distribution on Regab pockmark in relation to fluid
chemistry 250
12.3.1 Megafauna distribution on the Regab pockmark 250
12.3.2 Mytilid habitats 252
12.3.3 Bacterial mat habitat 255
12.3.4 Vesicomyid habitats 258
12.4 General conclusion on the megafauna distribution on the Regab pockmark
in relation to fluid chemistry 263
12.5 Bibliography 264
Chapter 13 Roles of Gas Hydrates for CO2 Geological Storage Purposes 267
André BURNOL
13.1 Introduction 267
13.2 Hydrate trapping of CO2 in subsurfaces (onshore, offshore and deep
offshore cases) 269
13.2.1 Case of migration of CO2 within the overburden 269
13.2.2 Case of natural gas hydrates exploitation using CO2 injection 270
13.2.3 Role of mixed gas hydrates in the "deep offshore" CO2 storage option
272
13.3 CO2 deep offshore storage capacity in the French and Spanish EEZs 276
13.4 Summary and prospects 281
13.5 Bibliography 281
Chapter 14 Hydrate-Based Removal of CO2 from CH4 + CO2 Gas Streams 285
Daniel BROSETA, Christophe DICHARRY and Jean-Philippe TORRÉ
14.1 Introduction 285
14.2 Laboratory experiments of gas capture and separation by means of gas
hydrates 290
14.2.1 Batch experiments 292
14.2.2 Semibatch experiments 295
14.2.3 Continuous separation experiments 295
14.3 Metrics of CO2 separation 295
14.4 Results from experiments of CO2 removal from CO2/CH4 gas mixtures 300
14.4.1 Pure water and water with surfactant additives 300
14.4.2 THF and other sII hydrate-forming additives 301
14.4.3 TBAB, TBPB and other semiclathrate-forming additives 303
14.5 Routes to enhance the removal of CO2 from CO2/CH4 gas mixtures 307
14.6 Concluding remarks 309
14.7 Bibliography 309
Chapter 15 Use of Hydrates for Cold Storage and Distribution in
Refrigeration and Air-Conditioning Applications 315
Anthony DELAHAYE, Laurence FOURNAISON and Didier DALMAZZONE
15.1 Introduction 315
15.2 Hydrate systems for cool storage and distribution 317
15.2.1 Refrigerant gas hydrate applied to cool storage 317
15.2.2 CO2 hydrates applied to cool storage and distribution 318
15.2.3 Quaternary salt hydrates for cool storage and distribution 319
15.2.4 Other hydrates applied to cool storage and distribution 320
15.3 Criteria for use of hydrates in refrigeration 321
15.3.1 Thermodynamic criterion 322
15.3.2 Flow criterion 325
15.3.3 Thermal criterion 331
15.3.4 Kinetic criterion 332
15.3.5 Energy criterion 334
15.4 Hydrate applications in refrigeration and air conditioning 335
15.4.1 Slurry generation methods 335
15.4.2 Examples of hydrate-based refrigeration systems 336
15.5 Conclusion 341
15.6 Bibliography 342
List of Authors 359
Index 363
Livio RUFFINE, Daniel BROSETA and Arnaud DESMEDT
Part 1 Field study and laboratory experiments of hydrate-bearing sediments
1
Introduction to Part 1 3
Livio RUFFINE
Chapter 1 Water Column Acoustics:Remote Detection of Gas Seeps 11
Carla SCALABRIN and Stéphanie DUPRÉ
1.1 Introduction 11
1.2 Principle of the measurement 14
1.2.1 Instrumentations 14
1.2.2 Qualitative and quantitative measurements 14
1.3 Bibliography 18
Chapter 2 Geophysical Approach 21
Bruno MARSSET
2.1 Introduction 21
2.2 Overview 21
2.3 Seismic processing 23
2.3.1 Positioning phase 23
2.3.2 Preprocessing phase 24
2.3.3 Processing phase 25
2.4 Example of gas hydrate exploration: the SYSIF instrument 28
2.5 Bibliography 29
Chapter 3 Hydrate Seismic Detection 31
Stephan KER
3.1 Wave velocities of hydrate-bearing sediments 32
3.1.1 Empirical equations 32
3.1.2 Effective medium theories 33
3.2 Bibliography 34
Chapter 4 Geomorphology of Gas Hydrate-Bearing Pockmark 37
Vincent RIBOULOT
4.1 Introduction 37
4.2 Generalities about pockmarks 38
4.3 Impact of gas hydrate on seafloor deformation 39
4.4 Morphological evolution of gas hydrate pockmarks 42
4.5 Distinction between gas hydrate-bearing and gas hydrate-free pockmarks
44
4.6 Bibliography 45
Chapter 5 Geotechnics 49
Sébastien GARZIGLIA
5.1 Introduction 49
5.2 The Penfeld system 50
5.2.1 Piezocone and acoustic soundings in gas hydrate-bearing sediments 52
5.3 Bibliography 54
Chapter 6 Geochemistry 57
Livio RUFFINE, Sandrine CHÉRON, Emmanuel PONZEVERA, Christophe
BRANDILY,Patrice WOERTHER, Vivien GUYADER, Audrey BOISSIER, Jean-Pierre
DONVAL and Germain BAYON
6.1 Introduction 57
6.2 Sampling geological materials from hydrate-bearing sediment 58
6.2.1 The Calypso corer 58
6.2.2 Sampling of sediments, carbonates and pore fluids from the Calypso
corer 62
6.3 Analyses 65
6.3.1 Sediment and carbonate 65
6.3.2 Gases 75
6.3.3 Pore water 78
6.4 Bibliography 82
Chapter 7 Benthic Ecosystem Study 85
Karine OLU, Laurent TOFFIN and Christophe BRANDILY
7.1 Microbial ecology in hydrate-bearing sediments 85
7.1.1 Study sites containing hydrate-bearing sediments 85
7.1.2 Sampling strategy for microbiology study of hydrate-bearing sediments
86
7.1.3 Laboratory analyses 87
7.2 Macrobial ecology studies at cold seeps 91
7.2.1 Mapping biogenic habitats 93
7.2.2 Chemical characterization of biogenic habitats 97
7.2.3 Sampling in biogenic habitats 103
7.2.4 Fauna 106
7.2.5 Symbiosis studies 110
7.3 Bibliography 111
Chapter 8 Physicochemical Properties of Gas Hydrate-bearing Sediments 121
Ludovic LEGOIX, Elke KOSSEL, Christian DEUSNER, Livio RUFFINE and Matthias
HAECKEL
8.1 Introduction 121
8.2 Gas hydrate formation and dissociation 124
8.3 Fluid transport in gas hydrate-bearing sediments 128
8.4 Thermal and electrical properties of gas hydrate-bearing sediments 133
8.5 Distribution and occurrence of gas hydrates in sediments 137
8.6 Experimental investigation of dynamic processes in gas hydrate-bearing
sediments 139
8.7 Bibliography 149
Chapter 9 Small-scale Laboratory Studies of Key Geotechnical Properties
which are Not Possible to Measure from In Situ Deployed Technologies 165
Sébastien GARZIGLIA
9.1 Introduction 165
9.2 Influence of gas hydrates on the stiffness and strength properties of
sediments 166
9.2.1 Elastic or small-strain stiffness properties 166
9.2.2 Large-strain stiffness and strength properties 168
9.2.3 Geotechnical consequences of gas hydrate destabilization 170
9.3 Bibliography 172
Part 2 Modeling of Gas Hydrate-bearing Sediments and Case Studies 177
Chapter 10 Geomechanical Aspects 179
Assaf KLAR and Shun UCHIDA
10.1 Introduction 179
10.2 Geomechanical characteristics 179
10.3 Constitutive models for continuum mechanics frameworks 181
10.3.1 Stress-strain formulation for hydrate-bearing sediments 183
10.3.2 DEM representation 191
10.4 Coupled formulation 195
10.5 Numerical simulations of the Nankai 2013 gas production test 202
10.5.1 The Nankai gas production test overview 202
10.5.2 Modeling procedure 203
10.5.3 History matching of the 2013 Nankai production test 210
10.5.4 Thermo-hydro-mechanical studies during the 2013 Nankai gas
production test 211
10.6 Concluding remarks 213
10.7 Bibliography 214
Chapter 11 Geochemical Aspects 219
Wei-Li HONG and Malgorzata PESZYNSKA
11.1 Introduction 219
11.2 Basic principles 220
11.2.1 Transport in the aqueous phase by advection and diffusion 220
11.2.2 Numerical scheme for the advection-diffusion problem 222
11.2.3 Transport of methane in aqueous phase in the presence of gas hydrate
phase 223
11.2.4 Transport of methane and salt species, with hydrate presence 225
11.3 Model framework 226
11.4 Model validation and sensitivity tests 230
11.5 Model application 230
11.6 Concluding remarks 239
11.7 Acknowledgments 239
11.8 Bibliography 239
Part 3 Geoscience and Industrial Applications 243
Chapter 12 Biogeochemical Dynamics of the Giant Pockmark Regab 245
Alexis DE PRUNELÉ, Karine OLU, Livio RUFFINE, Hélène ONDRÉAS,Jean-Claude
CAPRAIS, Germain BAYON, Anne-Sophie ALIX, Julie Le BRUCHEC and Louis GÉLI
12.1 Introduction 245
12.2 Location of the pockmark 246
12.2.1 The pockmark Regab: hydrocarbon emission and morphology 247
12.3 Megafauna distribution on Regab pockmark in relation to fluid
chemistry 250
12.3.1 Megafauna distribution on the Regab pockmark 250
12.3.2 Mytilid habitats 252
12.3.3 Bacterial mat habitat 255
12.3.4 Vesicomyid habitats 258
12.4 General conclusion on the megafauna distribution on the Regab pockmark
in relation to fluid chemistry 263
12.5 Bibliography 264
Chapter 13 Roles of Gas Hydrates for CO2 Geological Storage Purposes 267
André BURNOL
13.1 Introduction 267
13.2 Hydrate trapping of CO2 in subsurfaces (onshore, offshore and deep
offshore cases) 269
13.2.1 Case of migration of CO2 within the overburden 269
13.2.2 Case of natural gas hydrates exploitation using CO2 injection 270
13.2.3 Role of mixed gas hydrates in the "deep offshore" CO2 storage option
272
13.3 CO2 deep offshore storage capacity in the French and Spanish EEZs 276
13.4 Summary and prospects 281
13.5 Bibliography 281
Chapter 14 Hydrate-Based Removal of CO2 from CH4 + CO2 Gas Streams 285
Daniel BROSETA, Christophe DICHARRY and Jean-Philippe TORRÉ
14.1 Introduction 285
14.2 Laboratory experiments of gas capture and separation by means of gas
hydrates 290
14.2.1 Batch experiments 292
14.2.2 Semibatch experiments 295
14.2.3 Continuous separation experiments 295
14.3 Metrics of CO2 separation 295
14.4 Results from experiments of CO2 removal from CO2/CH4 gas mixtures 300
14.4.1 Pure water and water with surfactant additives 300
14.4.2 THF and other sII hydrate-forming additives 301
14.4.3 TBAB, TBPB and other semiclathrate-forming additives 303
14.5 Routes to enhance the removal of CO2 from CO2/CH4 gas mixtures 307
14.6 Concluding remarks 309
14.7 Bibliography 309
Chapter 15 Use of Hydrates for Cold Storage and Distribution in
Refrigeration and Air-Conditioning Applications 315
Anthony DELAHAYE, Laurence FOURNAISON and Didier DALMAZZONE
15.1 Introduction 315
15.2 Hydrate systems for cool storage and distribution 317
15.2.1 Refrigerant gas hydrate applied to cool storage 317
15.2.2 CO2 hydrates applied to cool storage and distribution 318
15.2.3 Quaternary salt hydrates for cool storage and distribution 319
15.2.4 Other hydrates applied to cool storage and distribution 320
15.3 Criteria for use of hydrates in refrigeration 321
15.3.1 Thermodynamic criterion 322
15.3.2 Flow criterion 325
15.3.3 Thermal criterion 331
15.3.4 Kinetic criterion 332
15.3.5 Energy criterion 334
15.4 Hydrate applications in refrigeration and air conditioning 335
15.4.1 Slurry generation methods 335
15.4.2 Examples of hydrate-based refrigeration systems 336
15.5 Conclusion 341
15.6 Bibliography 342
List of Authors 359
Index 363