40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
Jetzt verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
  • Format: PDF

This text provides a concise introduction, suitable for a one-semester special topics course, to the remarkable properties of Gaussian measures on both finite and infinite dimensional spaces. It begins with a brief resumé of probabilistic results in which Fourier analysis plays an essential role, and those results are then applied to derive a few basic facts about Gaussian measures on finite dimensional spaces. In anticipation of the analysis of Gaussian measures on infinite dimensional spaces, particular attention is given to those properties of Gaussian measures that are dimension…mehr

Produktbeschreibung
This text provides a concise introduction, suitable for a one-semester special topics
course, to the remarkable properties of Gaussian measures on both finite and infinite
dimensional spaces. It begins with a brief resumé of probabilistic results in which Fourier
analysis plays an essential role, and those results are then applied to derive a few basic
facts about Gaussian measures on finite dimensional spaces. In anticipation of the analysis
of Gaussian measures on infinite dimensional spaces, particular attention is given to those
properties of Gaussian measures that are dimension independent, and Gaussian processes
are constructed. The rest of the book is devoted to the study of Gaussian measures on
Banach spaces. The perspective adopted is the one introduced by I. Segal and developed
by L. Gross in which the Hilbert structure underlying the measure is emphasized.
The contents of this bookshould be accessible to either undergraduate or graduate
students who are interested in probability theory and have a solid background in Lebesgue
integration theory and a familiarity with basic functional analysis. Although the focus is
on Gaussian measures, the book introduces its readers to techniques and ideas that have
applications in other contexts.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Daniel W. Stroock is Emeritus professor of mathematics at MIT. He is a respected mathematician in the areas of analysis, probability theory and stochastic processes. Prof. Stroock has had an active career in both the research and education. From 2002 until 2006, he was the first holder of the second Simons Professorship of Mathematics. In addition, he has held several administrative posts, some within the university and others outside. In 1996, the AMS awarded him together with his former colleague jointly S.R.S. Varadhan the Leroy P. Steele Prize for seminal contributions to research in stochastic processes. Finally, he is a member of both the American Academy of Arts and Sciences, the National Academy of Sciences and a foreign member of the Polish Academy of Arts and Sciences.