69,49 €
69,49 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
69,49 €
69,49 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
Als Download kaufen
69,49 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
Jetzt verschenken
69,49 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
  • Format: PDF

An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 17.14MB
  • FamilySharing(5)
Produktbeschreibung
An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Mikis D. Stasinopoulos is Professor of Statistics at the School of Computing and Mathematical Sciences, University of Greenwich. He is, together with Professor Bob Rigby, coauthor of the original Royal Statistical Society article on GAMLSS. He has also coauthored three books on distributional regression, and in particular the theoretical and computational aspects of the GAMLSS framework.