43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
22 °P sammeln
43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
22 °P sammeln
Als Download kaufen
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
22 °P sammeln
Jetzt verschenken
43,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
22 °P sammeln
  • Format: PDF

This is an introductory book on generating functions (GFs) and their applications. It discusses commonly encountered generating functions in engineering and applied sciences, such as ordinary generating functions (OGF), exponential generating functions (EGF), probability generating functions (PGF), etc. Some new GFs like Pochhammer generating functions for both rising and falling factorials are introduced in Chapter 2. Two novel GFs called "mean deviation generating function" (MDGF) and "survival function generating function" (SFGF), are introduced in Chapter 3. The mean deviation of a variety…mehr

Produktbeschreibung
This is an introductory book on generating functions (GFs) and their applications. It discusses commonly encountered generating functions in engineering and applied sciences, such as ordinary generating functions (OGF), exponential generating functions (EGF), probability generating functions (PGF), etc. Some new GFs like Pochhammer generating functions for both rising and falling factorials are introduced in Chapter 2. Two novel GFs called "mean deviation generating function" (MDGF) and "survival function generating function" (SFGF), are introduced in Chapter 3. The mean deviation of a variety of discrete distributions are derived using the MDGF. The last chapter discusses a large number of applications in various disciplines including algebra, analysis of algorithms, polymer chemistry, combinatorics, graph theory, number theory, reliability, epidemiology, bio-informatics, genetics, management, economics, and statistics.

Some background knowledge on GFs is often assumed for courses in analysis of algorithms, advanced data structures, digital signal processing (DSP), graph theory, etc. These are usually provided by either a course on "discrete mathematics" or "introduction to combinatorics." But, GFs are also used in automata theory, bio-informatics, differential equations, DSP, number theory, physical chemistry, reliability engineering, stochastic processes, and so on. Students of these courses may not have exposure to discrete mathematics or combinatorics. This book is written in such a way that even those who do not have prior knowledge can easily follow through the chapters, and apply the lessons learned in their respective disciplines. The purpose is to give a broad exposure to commonly used techniques of combinatorial mathematics, highlighting applications in a variety of disciplines.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Rajan Chattamvelli is a professor in the School of Advanced Sciences at VIT University, Vellore, Tamil Nadu. He has published more than 22 research articles in international journals of repute and at various conferences. His research interests are in computational statistics, design of algorithms, parallel computing, data mining, machine learning, blockchain, combinatorics, and big data analytics. His prior assignments include Denver Public Health, Colorado; Metromail Corporation, Lincoln, Nebraska; Frederick University, Cyprus; Indian Institute of Management; Periyar Maniammai University, Thanjavur; and Presidency University, Bangalore. Ramalingam Shanmugam is a honorary professor in the school of Health Administration at Texas State University. He is the editor of the journals Advances in Life Sciences, Global Journal of Research and Review, and International Journal of Research in Medical Sciences, and book review editor of the Journal of Statistical Computation and Simulation. He has published more than 200 research articles and 120 conference papers. His areas of research include theoretical and computational statistics, number theory, operations research, biostatistics, decision making, and epidemiology. His prior assignments include University of South Alabama, University of Colorado at Denver, Argonne National Labs, Indian Statistical Institute, and Mississippi State University. He is a fellow of the International Statistical Institute.