Genetic and Evolutionary Computation (eBook, ePUB)
Medical Applications
Redaktion: Smith, Stephen L.; Cagnoni, Stefano
Alle Infos zum eBook verschenken
Genetic and Evolutionary Computation (eBook, ePUB)
Medical Applications
Redaktion: Smith, Stephen L.; Cagnoni, Stefano
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Genetic and Evolutionary Computation: Medical Applications provides an overview of the range of GEC techniques being applied to medicine and healthcare in a context that is relevant not only for existing GEC practitioners but also those from other disciplines, particularly health professionals. There is rapidly increasing interest in applying evolutionary computation to problems in medicine, but to date no text that introduces evolutionary computation in a medical context. By explaining the basic introductory theory, typical application areas and detailed implementation in one coherent volume,…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 8.23MB
- Glen de VriesThe Patient Equation (eBook, ePUB)19,99 €
- John S. TordayEvidence-Based Evolutionary Medicine (eBook, ePUB)99,99 €
- Nitric Oxide (Donor/Induced) in Chemosensitization (eBook, ePUB)121,95 €
- Desmond S. T. NichollIntroduction to Genetic Engineering (eBook, ePUB)46,95 €
- An Introduction to Biomaterials (eBook, ePUB)140,95 €
- Genetic and Evolutionary Computation (eBook, PDF)107,99 €
- Genetic Counseling Practice (eBook, ePUB)106,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 250
- Erscheinungstermin: 26. Juli 2011
- Englisch
- ISBN-13: 9781119956785
- Artikelnr.: 38248735
- Verlag: John Wiley & Sons
- Seitenzahl: 250
- Erscheinungstermin: 26. Juli 2011
- Englisch
- ISBN-13: 9781119956785
- Artikelnr.: 38248735
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
List of Contributors.
1 Introduction.
2 Evolutionary Computation: A Brief Overview (Stefano Cagnoni and Leonardo
Vanneschi).
2.1 Introduction.
2.2 Evolutionary Computation Paradigms.
2.2.1 Genetic Algorithms.
2.2.2 Evolution Strategies.
2.2.3 Evolutionary Programming.
2.2.4 Genetic Programming.
2.2.5 Other Evolutionary Techniques.
2.2.6 Theory of Evolutionary Algorithms.
2.3 Conclusions.
3 A Review of Medical Applications of Genetic and Evolutionary Computation
(Stephen L. Smith).
3.1 Medical Imaging and Signal Processing.
3.1.1 Overview.
3.1.2 Image Segmentation.
3.1.3 Image Registration, Reconstruction and Correction.
3.1.4 Other Applications.
3.2 Data Mining Medical Data and Patient Records.
3.3 Clinical Expert Systems and Knowledge-based Systems.
3.4 Modelling and Simulation of Medical Processes.
3.5 Clinical Diagnosis and Therapy.
4 Applications of GEC in Medical Imaging.
4.1 Evolutionary Deformable Models for Medical Image Segmentation: A
Genetic Algorithm Approach to Optimizing Learned, Intuitive, and Localized
Medial-based Shape Deformation (Chris McIntosh and Ghassan Hamarneh).
4.1.1 Introduction.
4.1.1.1 Statistically Constrained Localized and Intuitive Deformations.
4.1.1.2 Genetic Algorithms.
4.1.2 Methods.
4.1.2.1 Population Representation.
4.1.2.2 Encoding the Weights for GAs.
4.1.2.3 Mutations and Crossovers.
4.1.2.4 Calculating the Fitness of Members of the GA Population.
4.1.3 Results.
4.1.4 Conclusions.
4.2 Feature Selection for the Classification of Microcalcifications in
Digital Mammograms using Genetic Algorithms, Sequential Search and Class
Separability (Santiago E. Conant-Pablos, Rolando R. Hernández-Cisneros, and
Hugo Terashima-Marín).
4.2.1 Introduction.
4.2.2 Methodology.
4.2.2.1 Pre-processing.
4.2.2.2 Detection of Potential Microcalcifications (Signals).
4.2.2.3 Classification of Signals into Microcalcifications.
4.2.2.4 Detection of Microcalcification Clusters.
4.2.2.5 Classification of Microcalcification Clusters into Benign and
Malignant.
4.2.3 Experiments and Results.
4.2.3.1 From Pre-processing to Signal Extraction.
4.2.3.2 Classification of Signals into Microcalcifications.
4.2.3.3 Microcalcification Clusters Detection and Classification.
4.2.4 Conclusions and Future Work.
4.3 Hybrid Detection of Features within the Retinal Fundus using a Genetic
Algorithm (Vitoantonio Bevilacqua, Lucia Cariello, Simona Cambo, Domenico
Daleno, and Giuseppe Mastronardi).
4.3.1 Introduction.
4.3.2 Acquisition and Processing of Retinal Fundus Images.
4.3.2.1 Retinal Image Acquisition.
4.3.2.2 Image Processing.
4.3.3 Previous Work.
4.3.4 Implementation.
4.3.4.1 Vasculature Extraction.
4.3.4.2 A Genetic Algorithm for Edge Extraction.
4.3.4.3 Skeletonization Process.
4.3.4.4 Experimental Results.
5 New Analysis of Medical Data Sets using GEC.
5.1 Analysis and Classification ofMammography Reports using Maximum
Variation Sampling (Robert M. Patton, Barbara G. Beckerman, and Thomas E.
Potok).
5.1.1 Introduction.
5.1.2 Background.
5.1.3 Related Works.
5.1.4 Maximum Variation Sampling.
5.1.5 Data.
5.1.6 Tests.
5.1.7 Results & Discussion.
5.1.8 Summary.
5.2 An Interactive Search for Rules in Medical Data using Multiobjective
Evolutionary Algorithms (Daniela Zaharie, D. Lungeanu, and Flavia
Zamfirache).
5.2.1 Medical Data Mining.
5.2.2 Measures for Evaluating the Rules Quality.
5.2.2.1 Accuracy Measures.
5.2.2.2 Comprehensibility Measures.
5.2.2.3 Interestingness Measures.
5.2.3 Evolutionary Approaches in Rules Mining.
5.2.4 An Interactive Multiobjective Evolutionary Algorithm for Rules
Mining.
5.2.4.1 Rules Encoding.
5.2.4.2 Reproduction Operators.
5.2.4.3 Selection and Archiving.
5.2.4.4 User Guided Evolutionary Search.
5.2.5 Experiments in Medical Rules Mining.
5.2.5.1 Impact of User Interaction.
5.2.6 Conclusions.
5.3 Genetic Programming for Exploring Medical Data using Visual Spaces (
Julio J. Valdés, Alan J. Barton, and Robert Orchard).
5.3.1 Introduction.
5.3.2 Visual Spaces.
5.3.2.1 Visual Space Realization.
5.3.2.2 Visual Space Taxonomy.
5.3.2.3 Visual Space Geometries.
5.3.2.4 Visual Space Interpretation Taxonomy.
5.3.2.5 Visual Space Characteristics Examination.
5.3.2.6 Visual Space Mapping Taxonomy.
5.3.2.7 Visual Space Mapping Computation.
5.3.3 Experimental Settings.
5.3.3.1 Implicit Classical Algorithm Settings.
5.3.3.2 Explicit GEP Algorithm Settings.
5.3.4 Medical Examples.
5.3.4.1 Data Space Examples.
5.3.4.2 Semantic Space Examples.
5.3.5 Future Directions.
6 Advanced Modelling, Diagnosis and Treatment using GEC.
6.1 Objective Assessment of Visuo-spatial Ability using Implicit Context
Representation Cartesian Genetic Programming (Michael A. Lones and Stephen
L. Smith).
6.1.1 Introduction.
6.1.2 Evaluation of Visuo-spatial Ability.
6.1.3 Implicit Context Representation CGP.
6.1.4 Methodology.
6.1.4.1 Data Collection.
6.1.4.2 Evaluation.
6.1.4.3 Parameter Settings.
6.1.5 Results.
6.1.6 Conclusions.
6.2 Towards an Alternative to Magnetic Resonance Imaging for Vocal Tract
Shape Measurement using the Principles of Evolution (David M. Howard, Andy
M. Tyrrell, and Crispin Cooper).
6.2.1 Introduction.
6.2.2 Oral Tract Shape Evolution.
6.2.3 Recording the Target Vowels.
6.2.4 Evolving Oral Tract Shapes.
6.2.5 Results.
6.2.5.1 Oral Tract Areas.
6.2.5.2 Spectral Comparisons.
6.2.6 Conclusions.
6.3 How Genetic Algorithms can Improve Pacemaker Efficiency (Laurent Dumas
and Linda El Alaoui).
6.3.1 Introduction.
6.3.2 Modeling of the Electrical Activity of the Heart.
6.3.3 The Optimization Principles.
6.3.3.1 The Cost Function.
6.3.3.2 The Optimization Algorithm.
6.3.3.3 A New Genetic Algorithm with a Surrogate Model.
6.3.3.4 Results of AGA on Test Functions.
6.3.4 A Simplified Test Case for a Pacemaker Optimization.
6.3.4.1 Description of the Test Case.
6.3.4.2 Numerical Results.
6.3.5 Conclusion.
7 The Future for Genetic and Evolutionary Computation in Medicine:
Opportunities, Challenges and Rewards.
7.1 Opportunities.
7.2 Challenges.
7.3 Rewards.
7.4 The Future for Genetic and Evolutionary Computation in Medicine.
Appendix: Introductory Books and Useful Links.
Index.
List of Contributors.
1 Introduction.
2 Evolutionary Computation: A Brief Overview (Stefano Cagnoni and Leonardo
Vanneschi).
2.1 Introduction.
2.2 Evolutionary Computation Paradigms.
2.2.1 Genetic Algorithms.
2.2.2 Evolution Strategies.
2.2.3 Evolutionary Programming.
2.2.4 Genetic Programming.
2.2.5 Other Evolutionary Techniques.
2.2.6 Theory of Evolutionary Algorithms.
2.3 Conclusions.
3 A Review of Medical Applications of Genetic and Evolutionary Computation
(Stephen L. Smith).
3.1 Medical Imaging and Signal Processing.
3.1.1 Overview.
3.1.2 Image Segmentation.
3.1.3 Image Registration, Reconstruction and Correction.
3.1.4 Other Applications.
3.2 Data Mining Medical Data and Patient Records.
3.3 Clinical Expert Systems and Knowledge-based Systems.
3.4 Modelling and Simulation of Medical Processes.
3.5 Clinical Diagnosis and Therapy.
4 Applications of GEC in Medical Imaging.
4.1 Evolutionary Deformable Models for Medical Image Segmentation: A
Genetic Algorithm Approach to Optimizing Learned, Intuitive, and Localized
Medial-based Shape Deformation (Chris McIntosh and Ghassan Hamarneh).
4.1.1 Introduction.
4.1.1.1 Statistically Constrained Localized and Intuitive Deformations.
4.1.1.2 Genetic Algorithms.
4.1.2 Methods.
4.1.2.1 Population Representation.
4.1.2.2 Encoding the Weights for GAs.
4.1.2.3 Mutations and Crossovers.
4.1.2.4 Calculating the Fitness of Members of the GA Population.
4.1.3 Results.
4.1.4 Conclusions.
4.2 Feature Selection for the Classification of Microcalcifications in
Digital Mammograms using Genetic Algorithms, Sequential Search and Class
Separability (Santiago E. Conant-Pablos, Rolando R. Hernández-Cisneros, and
Hugo Terashima-Marín).
4.2.1 Introduction.
4.2.2 Methodology.
4.2.2.1 Pre-processing.
4.2.2.2 Detection of Potential Microcalcifications (Signals).
4.2.2.3 Classification of Signals into Microcalcifications.
4.2.2.4 Detection of Microcalcification Clusters.
4.2.2.5 Classification of Microcalcification Clusters into Benign and
Malignant.
4.2.3 Experiments and Results.
4.2.3.1 From Pre-processing to Signal Extraction.
4.2.3.2 Classification of Signals into Microcalcifications.
4.2.3.3 Microcalcification Clusters Detection and Classification.
4.2.4 Conclusions and Future Work.
4.3 Hybrid Detection of Features within the Retinal Fundus using a Genetic
Algorithm (Vitoantonio Bevilacqua, Lucia Cariello, Simona Cambo, Domenico
Daleno, and Giuseppe Mastronardi).
4.3.1 Introduction.
4.3.2 Acquisition and Processing of Retinal Fundus Images.
4.3.2.1 Retinal Image Acquisition.
4.3.2.2 Image Processing.
4.3.3 Previous Work.
4.3.4 Implementation.
4.3.4.1 Vasculature Extraction.
4.3.4.2 A Genetic Algorithm for Edge Extraction.
4.3.4.3 Skeletonization Process.
4.3.4.4 Experimental Results.
5 New Analysis of Medical Data Sets using GEC.
5.1 Analysis and Classification ofMammography Reports using Maximum
Variation Sampling (Robert M. Patton, Barbara G. Beckerman, and Thomas E.
Potok).
5.1.1 Introduction.
5.1.2 Background.
5.1.3 Related Works.
5.1.4 Maximum Variation Sampling.
5.1.5 Data.
5.1.6 Tests.
5.1.7 Results & Discussion.
5.1.8 Summary.
5.2 An Interactive Search for Rules in Medical Data using Multiobjective
Evolutionary Algorithms (Daniela Zaharie, D. Lungeanu, and Flavia
Zamfirache).
5.2.1 Medical Data Mining.
5.2.2 Measures for Evaluating the Rules Quality.
5.2.2.1 Accuracy Measures.
5.2.2.2 Comprehensibility Measures.
5.2.2.3 Interestingness Measures.
5.2.3 Evolutionary Approaches in Rules Mining.
5.2.4 An Interactive Multiobjective Evolutionary Algorithm for Rules
Mining.
5.2.4.1 Rules Encoding.
5.2.4.2 Reproduction Operators.
5.2.4.3 Selection and Archiving.
5.2.4.4 User Guided Evolutionary Search.
5.2.5 Experiments in Medical Rules Mining.
5.2.5.1 Impact of User Interaction.
5.2.6 Conclusions.
5.3 Genetic Programming for Exploring Medical Data using Visual Spaces (
Julio J. Valdés, Alan J. Barton, and Robert Orchard).
5.3.1 Introduction.
5.3.2 Visual Spaces.
5.3.2.1 Visual Space Realization.
5.3.2.2 Visual Space Taxonomy.
5.3.2.3 Visual Space Geometries.
5.3.2.4 Visual Space Interpretation Taxonomy.
5.3.2.5 Visual Space Characteristics Examination.
5.3.2.6 Visual Space Mapping Taxonomy.
5.3.2.7 Visual Space Mapping Computation.
5.3.3 Experimental Settings.
5.3.3.1 Implicit Classical Algorithm Settings.
5.3.3.2 Explicit GEP Algorithm Settings.
5.3.4 Medical Examples.
5.3.4.1 Data Space Examples.
5.3.4.2 Semantic Space Examples.
5.3.5 Future Directions.
6 Advanced Modelling, Diagnosis and Treatment using GEC.
6.1 Objective Assessment of Visuo-spatial Ability using Implicit Context
Representation Cartesian Genetic Programming (Michael A. Lones and Stephen
L. Smith).
6.1.1 Introduction.
6.1.2 Evaluation of Visuo-spatial Ability.
6.1.3 Implicit Context Representation CGP.
6.1.4 Methodology.
6.1.4.1 Data Collection.
6.1.4.2 Evaluation.
6.1.4.3 Parameter Settings.
6.1.5 Results.
6.1.6 Conclusions.
6.2 Towards an Alternative to Magnetic Resonance Imaging for Vocal Tract
Shape Measurement using the Principles of Evolution (David M. Howard, Andy
M. Tyrrell, and Crispin Cooper).
6.2.1 Introduction.
6.2.2 Oral Tract Shape Evolution.
6.2.3 Recording the Target Vowels.
6.2.4 Evolving Oral Tract Shapes.
6.2.5 Results.
6.2.5.1 Oral Tract Areas.
6.2.5.2 Spectral Comparisons.
6.2.6 Conclusions.
6.3 How Genetic Algorithms can Improve Pacemaker Efficiency (Laurent Dumas
and Linda El Alaoui).
6.3.1 Introduction.
6.3.2 Modeling of the Electrical Activity of the Heart.
6.3.3 The Optimization Principles.
6.3.3.1 The Cost Function.
6.3.3.2 The Optimization Algorithm.
6.3.3.3 A New Genetic Algorithm with a Surrogate Model.
6.3.3.4 Results of AGA on Test Functions.
6.3.4 A Simplified Test Case for a Pacemaker Optimization.
6.3.4.1 Description of the Test Case.
6.3.4.2 Numerical Results.
6.3.5 Conclusion.
7 The Future for Genetic and Evolutionary Computation in Medicine:
Opportunities, Challenges and Rewards.
7.1 Opportunities.
7.2 Challenges.
7.3 Rewards.
7.4 The Future for Genetic and Evolutionary Computation in Medicine.
Appendix: Introductory Books and Useful Links.
Index.