These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics include: modularity and scalability; evolvability; human-competitive results; the need for important high-impact GP-solvable problems;; the risks of search stagnation and of cutting off paths to solutions; the need for novelty; empowering GP search with expert knowledge; In addition, GP symbolic regression is thoroughly discussed, addressing such topics as guaranteed reproducibility of SR; validating SR results, measuring and controlling genotypic complexity; controlling phenotypic complexity; identifying, monitoring, and avoiding over-fitting; finding a comprehensive collection of SR benchmarks, comparing SR to machine learning. This text is for all GP explorers. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.