Genomics and Proteomics Engineering in Medicine and Biology (eBook, PDF)
Redaktion: Akay, Metin
Alle Infos zum eBook verschenken
Genomics and Proteomics Engineering in Medicine and Biology (eBook, PDF)
Redaktion: Akay, Metin
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Current applications and recent advances in genomics and proteomics Genomics and Proteomics Engineering in Medicine and Biology presents a well-rounded, interdisciplinary discussion of a topic that is at the cutting edge of both molecular biology and bioengineering. Compiling contributions by established experts, this book highlights up-to-date applications of biomedical informatics, as well as advancements in genomics-proteomics areas. Structures and algorithms are used to analyze genomic data and develop computational solutions for pathological understanding. Topics discussed include: *…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 7.18MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 450
- Erscheinungstermin: 17. August 2007
- Englisch
- ISBN-13: 9780470052181
- Artikelnr.: 37289960
- Verlag: John Wiley & Sons
- Seitenzahl: 450
- Erscheinungstermin: 17. August 2007
- Englisch
- ISBN-13: 9780470052181
- Artikelnr.: 37289960
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Contributors.
1. Qualitative Knowledge Models in Functional Genomics and Proteomics (Mor
Peleg, Irene S. Gabashvili, and Russ B. Altman).
1.1. Introduction.
1.2. Methods and Tools.
1.3. Modeling Approach and Results.
1.4. Discussion.
1.5. Conclusion.
References.
2. Interpreting Microarray Data and Related Applications Using Nonlinear
System Identification (Michael Korenberg).
2.1. Introduction.
2.2. Background.
2.3. Parallel Cascade Identification.
2.4. Constructing Class Predictors.
2.5. Prediction Based on Gene Expression Profiling.
2.6. Comparing Different Predictors Over the Same Data Set.
2.7. Concluding Remarks.
References.
3. Gene Regulation Bioinformatics of Microarray Data (Gert Thijs, Frank De
Smet, Yves Moreau, Kathleen Marchal, and Bart De Moor).
3.1. Introduction.
3.2. Introduction to Transcriptional Regulation.
3.3. Measuring Gene Expression Profiles.
3.4. Preprocessing of Data.
3.5. Clustering of Gene Expression Profiles.
3.6. Cluster Validation.
3.7. Searching for Common Binding Sites of Coregulated Genes.
3.8. Inclusive: Online Integrated Analysis of Microarray Data.
3.9. Further Integrative Steps.
3.10. Conclusion.
References.
4. Robust Methods for Microarray Analysis (George S. Davidson, Shawn
Martin, Kevin W. Boyack, Brian N. Wylie, Juanita Martinez, Anthony Aragon,
Margaret Werner-Washburne, Mönica Mosquera-Caro, and Cheryl Willman).
4.1. Introduction.
4.2. Microarray Experiments and Analysis Methods.
4.3. Unsupervised Methods.
4.4. Supervised Methods.
4.5. Conclusion.
References.
5. In Silico Radiation Oncology: A Platform for Understanding Cancer
Behavior and Optimizing Radiation Therapy Treatment (G. Stamatakos, D.
Dionysiou, and N. Uzunoglu).
5.1. Philosophiae Tumoralis Principia Algorithmica: Algorithmic Principles
of Simulating Cancer on Computer.
5.2. Brief Literature Review.
5.3. Paradigm of Four-Dimensional Simulation of Tumor Growth and Response
to Radiation Therapy In Vivo.
5.4. Discussion.
5.5. Future Trends.
References.
6. Genomewide Motif Identification Using a Dictionary Model (Chiara Sabatti
and Kenneth Lange).
6.1. Introduction.
6.2. Unified Model.
6.3. Algorithms for Likelihood Evaluation.
6.4. Parameter Estimation via Minorization-Maximization Algorithm.
6.5. Examples.
6.6. Discussion and Conclusion.
References.
7. Error Control Codes and the Genome (Elebeoba E. May).
7.1. Error Control and Communication: A Review.
7.3. Reverse Engineering the Genetic Error Control System.
7.4. Applications of Biological Coding Theory.
References.
8. Complex Life Science Multidatabase Queries (Zina Ben Miled, Nianhua Li,
Yue He, Malika Mahoui, and Omran Bukhres).
8.1. Introduction.
8.2. Architecture.
8.3. Query Execution Plans.
8.4. Related Work.
8.5. Future Trends.
References.
9. Computational Analysis of Proteins (Dimitrios I. Fotiadis, Yorgos
Goletsis, Christos Lampros, and Costas Papaloukas).
9.1. Introduction: Definitions.
9.2. Databases.
9.3. Sequence Motifs and Domains.
9.4. Sequence Alignment.
9.5. Modeling.
9.6. Classification and Prediction.
9.7. Natural Language Processing.
9.8. Future Trends.
References.
10. Computational Analysis of Interactions Between Tumor and Tumor
Suppressor Proteins (E. Pirogova, M. Akay, and I. Cosic).
10.1. Introduction.
10.2. Methodology: Resonant Recognition Model.
10.3. Results and Discussions.
10.4. Conclusion.
References.
Index.
About the Editor.
Contributors.
1. Qualitative Knowledge Models in Functional Genomics and Proteomics (Mor
Peleg, Irene S. Gabashvili, and Russ B. Altman).
1.1. Introduction.
1.2. Methods and Tools.
1.3. Modeling Approach and Results.
1.4. Discussion.
1.5. Conclusion.
References.
2. Interpreting Microarray Data and Related Applications Using Nonlinear
System Identification (Michael Korenberg).
2.1. Introduction.
2.2. Background.
2.3. Parallel Cascade Identification.
2.4. Constructing Class Predictors.
2.5. Prediction Based on Gene Expression Profiling.
2.6. Comparing Different Predictors Over the Same Data Set.
2.7. Concluding Remarks.
References.
3. Gene Regulation Bioinformatics of Microarray Data (Gert Thijs, Frank De
Smet, Yves Moreau, Kathleen Marchal, and Bart De Moor).
3.1. Introduction.
3.2. Introduction to Transcriptional Regulation.
3.3. Measuring Gene Expression Profiles.
3.4. Preprocessing of Data.
3.5. Clustering of Gene Expression Profiles.
3.6. Cluster Validation.
3.7. Searching for Common Binding Sites of Coregulated Genes.
3.8. Inclusive: Online Integrated Analysis of Microarray Data.
3.9. Further Integrative Steps.
3.10. Conclusion.
References.
4. Robust Methods for Microarray Analysis (George S. Davidson, Shawn
Martin, Kevin W. Boyack, Brian N. Wylie, Juanita Martinez, Anthony Aragon,
Margaret Werner-Washburne, Mönica Mosquera-Caro, and Cheryl Willman).
4.1. Introduction.
4.2. Microarray Experiments and Analysis Methods.
4.3. Unsupervised Methods.
4.4. Supervised Methods.
4.5. Conclusion.
References.
5. In Silico Radiation Oncology: A Platform for Understanding Cancer
Behavior and Optimizing Radiation Therapy Treatment (G. Stamatakos, D.
Dionysiou, and N. Uzunoglu).
5.1. Philosophiae Tumoralis Principia Algorithmica: Algorithmic Principles
of Simulating Cancer on Computer.
5.2. Brief Literature Review.
5.3. Paradigm of Four-Dimensional Simulation of Tumor Growth and Response
to Radiation Therapy In Vivo.
5.4. Discussion.
5.5. Future Trends.
References.
6. Genomewide Motif Identification Using a Dictionary Model (Chiara Sabatti
and Kenneth Lange).
6.1. Introduction.
6.2. Unified Model.
6.3. Algorithms for Likelihood Evaluation.
6.4. Parameter Estimation via Minorization-Maximization Algorithm.
6.5. Examples.
6.6. Discussion and Conclusion.
References.
7. Error Control Codes and the Genome (Elebeoba E. May).
7.1. Error Control and Communication: A Review.
7.3. Reverse Engineering the Genetic Error Control System.
7.4. Applications of Biological Coding Theory.
References.
8. Complex Life Science Multidatabase Queries (Zina Ben Miled, Nianhua Li,
Yue He, Malika Mahoui, and Omran Bukhres).
8.1. Introduction.
8.2. Architecture.
8.3. Query Execution Plans.
8.4. Related Work.
8.5. Future Trends.
References.
9. Computational Analysis of Proteins (Dimitrios I. Fotiadis, Yorgos
Goletsis, Christos Lampros, and Costas Papaloukas).
9.1. Introduction: Definitions.
9.2. Databases.
9.3. Sequence Motifs and Domains.
9.4. Sequence Alignment.
9.5. Modeling.
9.6. Classification and Prediction.
9.7. Natural Language Processing.
9.8. Future Trends.
References.
10. Computational Analysis of Interactions Between Tumor and Tumor
Suppressor Proteins (E. Pirogova, M. Akay, and I. Cosic).
10.1. Introduction.
10.2. Methodology: Resonant Recognition Model.
10.3. Results and Discussions.
10.4. Conclusion.
References.
Index.
About the Editor.