O. M. Saether, P. de Caritat
Geochemical Processes, Weathering and Groundwater Recharge in Catchments (eBook, ePUB)
51,95 €
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
51,95 €
Als Download kaufen
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
O. M. Saether, P. de Caritat
Geochemical Processes, Weathering and Groundwater Recharge in Catchments (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This volume covers areas such as: introduction to weathering processes; catchment hydrology; chemical analysis of rocks and soils; collection and analysis of groundwater samples; environmental isotopes as tracers in catchment; and field instrument...
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 35.45MB
Andere Kunden interessierten sich auch für
- O. M. SaetherGeochemical Processes, Weathering and Groundwater Recharge in Catchments (eBook, PDF)51,95 €
- Yu P. OrovetskiiMantle Plumes (eBook, ePUB)192,95 €
- Clifford J. MugnierCoordinate Systems of the World (eBook, ePUB)186,95 €
- Glacial Deposits in Northeast Europe (eBook, ePUB)248,95 €
- Climate Change and the Coast (eBook, ePUB)48,95 €
- Gretchen N. PetersonGIS Cartography (eBook, ePUB)45,95 €
- The Climate System (eBook, ePUB)52,95 €
-
-
-
This volume covers areas such as: introduction to weathering processes; catchment hydrology; chemical analysis of rocks and soils; collection and analysis of groundwater samples; environmental isotopes as tracers in catchment; and field instrument...
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 400
- Erscheinungstermin: 19. August 2020
- Englisch
- ISBN-13: 9781000150599
- Artikelnr.: 59960252
- Verlag: Taylor & Francis
- Seitenzahl: 400
- Erscheinungstermin: 19. August 2020
- Englisch
- ISBN-13: 9781000150599
- Artikelnr.: 59960252
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr Ola M Saether and Patrice de Caritat are senior research scientists at the Geochemistry and Hydrogeology Section of the Geological Survey of Norway.
PREFACE
PARTI: CATCHMENT PROCESSES
1 WEATHERING PROCESSES James I. Drever
1.1 Definitions of weathering
1.2 Types of weathering reaction
1.2.1 Congruent dissolution
1.2.2 Incongruent dissolution
1.3 Cation exchange
1.4 Mineral dissolution kinetics
1.4.1 Relative rates
1.4.2 Effects of solution composition on dissolution rates of silicate minerals
1.5 Comparisons between field and laboratory dissolution rates
1.6 Modeling approaches
1.7 Future research directions References
2 COMPOSITION, PROPERTIES AND DEVELOPMENT OF NORDIC SOILS Ole K Borggaard
2.1 Introduction
2.2 Soil composition
2.2.1 Soil air
2.2.2 Soil water
2.2.3 Soil organic matter (SOM)
2.2.4 Soil minerals
2.3 Soil properties
2.3.1 Physical properties
2.3.2 Chemical properties
2.4 Soil development processes
2.4.1 Decalcification
2.4.2 Gleization
2.4.3 Lessivage (clay migration)
2.4.4 Podzolization
2.5 Summary with conclusions
2.6 Future research directions
Appendix A: Definition, terminology, horizons and description of soil
Appendix B: Classification
Acknowledgement
References
3 CATCHMENT HYDROLOGY Allan Rodhe & Anund Killingtveit
3.1 Introduction
3.2 The catchment
3.3 Water balance
3.4 Runoff processes in the catchment
3.5 Soil water storage and flow processes
3.6 Mathematical modelling of soil water movement
3.6.1 Soil water potential
3.6.2 Water flow
Darcy's law
3.6.3 Drainage equilibrium
3.7 Groundwater storage and flow
3.7.1 Aquifers and aquitards
3.7.2 Storage coefficient
3.7.3 Groundwater flow
3.7.4 Flow velocity
3.7.5 Preferential flowpaths
macropore flow
3.8 Streamflow generation
3.8.1 Hortonian overland flow
3.8.2 Variable source area
3.8.3 Recharge and discharge areas
3.8.4 Groundwater contribution in discharge areas
3.9 The role of topography
3.10 The HBV
model: A precipitation /runoff
model
3.10.1 The snow routine
3.10.2 The soil moisture routine
3.10.3 The runoff response routine
3.11 Model calibration and use
3.12 Components of the water budget in the Nordic countries References
4 GROUNDWATER RECHARGE David N Lemer
4.1 What is recharge?
4.1.1 Recharge and related concepts
4.1.2 Recharge in the hydrological cycle
4.1.3 Objectives of chapter
4.2 Hydrogeological environments
4.2.1 Introduction
4.2.2 Permo
Triassic sandstone of the UK
4.2.3 Scandinavian conditions
4.3 Precipitation recharge
4.3.1 Introduction
4.3.2 Lysimeters: Direct measurement
4.3.3 Empirical methods
4.3.4 Soil moisture budgeting method
4.3.5 Darcian approaches
4.3.6 Tracer techniques
4.3.7 Variability of recharge across catchments
4.3.8 Localised recharge
4.4 Recharge from rivers
4.4.1 River types
4.4.2 Rivers in contact with the water table
4.4.3 River recharge estimation methods
4.4.4 Groundwater response under ephemeral rivers
4.4.5 Water balances
4.4.6 Darcian approaches
4.4.7 Tracer techniques for groundwater recharge from river
4.5 Interaquifer flows
4.6 Net recharge over a region
4.6.1 Introduction
4.6.2 Water table rise
4.6.3 Hydrograph analysis for groundwater discharge
4.6.4 Inverse techniques
4.6.5 Aquifer
wide tracers
4.7 Concluding remarks
References
PART 2: TECHNIQUES FOR CATCHMENT STUDIES
5 CHEMICAL ANALYSIS OF ROCKS AND SOILS
Magne 0degard
5.1 Introduction
5.2 Historical development
5.3 Total analysis versus partial analysis
5.4 Analytical methods
5.4.1 X
ray fluorescence (XRF)
5.4.2 Inductively coupled plasma atomic emission spectrometry (ICP
AES)
5.4.3 Atomic absorption spectrometry (AAS)
5.5 Quality control
References
6 COLLECTION AND ANALYSIS OF GROUNDWATER SAMPLES John Mather
6.1 Introduction
6.2 Data quality
6.3 Sample collection and analysis
6.3.1 Field parameters
6.3.2 Laboratory measurements
6.3.3 Pore water analysis
6.4 Representation of data
6.5 Water quality standards
Appendix A: Prescribed concentrations or values specified in the UK Water
Supply (Water Quality) regulations 1989
References
7 ENVIRONMENTAL ISOTOPES AS TRACERS IN CATCHMENTS Sylvi Haldorsen, Gunnhild Riise, Berit Swensen & Ronald S. Sletten
7.1 Introduction
7.1.1 Environmental isotopes
7.1.2 The use of environmental isotopes in small catchments
7.2 Oxygen and hydrogen isotopes
7.2.1 Stable isotopes: 180 and 2H(D)
7.2.2 Application of 8180 and 8D in catchment studies
7.2.3 Tritium
7.3 Carbon isotopes
7.3.1 The 14C isotope
7.3.2 The 13C isotope
7.4 Nitrogen isotopes
7.4.1 Nitrogen isotope variations in precipitation
7.4.2 S15N of NO3 in the pedosphere and groundwater
7.4.3 Pollution studies in catchments and groundwater aquifers
7.5 Sulphur isotopes
7.5.1 Some examples of sulphur isotopes studies
7.6 Conclusions Acknowledgements References
8 FIELD INSTRUMENTATION
Anund Killingtveit, Knut Sand & Nils Roar Scelthun
8.1 Streamflow measurements
8.1.1 Introduction
8.1.2 Measurement of stage
8.1.3 Discharge measurement methods
8.1.4 Stage
discharge relation
8.1.5 Practical considerations
8.2 Automatic data acquisition systems in hydrology
8.2.1 Introduction
8.2.2 Main structure and system components
9 CATCHMENT MASS BALANCE James I. Drever
9.1 Introduction
9.2 Terms in the mass balance equation
9.2.1 Solutes in outflow
9.2.2 Solutes from the atmosphere
9.2.3 Changes in the exchange pool
9.2.4 Changes in the biomass
9.2.5 Chemical weathering
9.3 Mass balance and mineral weathering
9.3.1 The Sierra Nevada, California, USA
9.3.2 Absaroka mountains, Wyoming, USA
9.3.3 Adirondack mountains, New York, USA
9.3.4 Sogndal, Norway
9.4 The problem of excess calcium
9.4.1 South Cascade Glacier, Washington, USA
9.4.2 Loch Vale, Colorado, USA
9.4.3 Discussion
9.5 Conclusions
9.6 Future directions in research References
10 NATURAL ORGANIC MATTER IN CATCHMENTS James F. Ranville & Donald L. Macalady
10.1 Introduction
10.2 The nature and origin of natural organic matter
10.2.1 Nature of natural organic matter
10.2.2 Origin of natural organic matter
10.3 Geochemical reactions of natural organic matter
10.3.1 Weathering and natural organic matter in catchments
10.3.2 Development of natural organic matter profiles in catchments
10.3.3 Hydrological controls on the transport of natural organic matter
10.3.4 Redox chemistry of metal
organic complexes
10.3.5 Natural organic matter and metal ion transport
10.4 Interactions between natural organic matter and anthropogenic chemicals
10.4.1 Transport of pollutant metals as dissolved natural organic matter complexes
10.4.2 Effects of sorption /partitioning to natural organic matter on the transport of organic chemicals
10.4.3 Effects of natural organic matter on hydrolytic reactions
10.4.4 Oxidation /reduction reactions facilitated by natural organic matter
10.4.5 Colloidal natural organic matter and facilitated transport
10.4.6 Natural organic matter... sink for pollutants or facilitator of transport? Mysteries and research questions
10.5 Conclusions
10.6 Future research directions
References
11 RELATIONSHIP BETWEEN ROCK, SOIL AND GROUNDWATER COMPOSITIONS John Mather
11.1 Introduction
11.2 The source term
11.3 Factors affecting groundwater chemistry
11.4 Reactions in the unsaturated zone
11.4.1 Gas dissolution and redistribution
11.4.2 Carbonate and silicate dissolution
11.4.3 Sulphide oxidation
11.4.4 Gypsum precipitation and dissolution
11.4.5 Cation exchange
11.4.6 Organic reactions
11.5 Reactions in the saturated zone
11.5.1 Carbonate and silicate dissolution
11.5.2 Dissolution of soluble salts
11.5.3 Redox reactions
11.5.4 Cation exchange
11.6 Saline groundwaters
11.7 Groundwater compositions
11.8 Anthropogenic influences
11.8.1 Agricultural pollution
11.8.2 Industrial pollution
11.8.3 Acid rain
11.9 Conclusions
11.10 Future research
References
12 TOWARDS COUPLING HYDROLOGICAL, SOIL AND WEATHERING PROCESSES WITHIN A MODELLING PERSPECTIVE Colin Nealy Alice J. Robson & Nils Christophersen
12.1 Introduction
12.1.1 General
12.2 A case study from Wales
12.2.1 Description of the study area
12.2.2 Hydrochemistry
12.3 Sources contributing to stream flow
12.3.1 Rationale
12.3.2 Hydrograph separation
12.3.3 Hydrograph separation using continuous data
12.3.4 Conclusions concerning water mixing relationships
12.4 Chemical mixing, speciation and solubility controls for aluminium
12.4.1 Rationale
12.4.2 Modelling chemical speciation
12.4.3 Mixing model results
12.5 Modelling studies
12.5.1 Modelling background
12.5.2 Short term modelling studies
12.5.3 Long term modelling studies
12.6 Towards integrated models
12.6.1 Developing a cation exchange model accounting for soil heterogeneity
12.6.2 Summary of findings
12.7 Discussions
12.8 Recommendations
12.9 Conclusions
12.10 Future research directions
References
13 CHEMICAL CHANGES ATTENDING WATER CYCLING THROUGH
A CATCHMENT
AN OVERVIEW
Patrice de Caritat & Ola M. Saether
13.1 Introduction
13.2 The geochemical cycle
13.3 The water cycle
13.4 Every drop of rain
13.5 Soil searching
13.6 The water table
13.7 Discharge!
13.8 All the rivers run
Acknowledgements
A non
comprehensive list of useful references
LIST OF AUTHORS
INDEX.
PARTI: CATCHMENT PROCESSES
1 WEATHERING PROCESSES James I. Drever
1.1 Definitions of weathering
1.2 Types of weathering reaction
1.2.1 Congruent dissolution
1.2.2 Incongruent dissolution
1.3 Cation exchange
1.4 Mineral dissolution kinetics
1.4.1 Relative rates
1.4.2 Effects of solution composition on dissolution rates of silicate minerals
1.5 Comparisons between field and laboratory dissolution rates
1.6 Modeling approaches
1.7 Future research directions References
2 COMPOSITION, PROPERTIES AND DEVELOPMENT OF NORDIC SOILS Ole K Borggaard
2.1 Introduction
2.2 Soil composition
2.2.1 Soil air
2.2.2 Soil water
2.2.3 Soil organic matter (SOM)
2.2.4 Soil minerals
2.3 Soil properties
2.3.1 Physical properties
2.3.2 Chemical properties
2.4 Soil development processes
2.4.1 Decalcification
2.4.2 Gleization
2.4.3 Lessivage (clay migration)
2.4.4 Podzolization
2.5 Summary with conclusions
2.6 Future research directions
Appendix A: Definition, terminology, horizons and description of soil
Appendix B: Classification
Acknowledgement
References
3 CATCHMENT HYDROLOGY Allan Rodhe & Anund Killingtveit
3.1 Introduction
3.2 The catchment
3.3 Water balance
3.4 Runoff processes in the catchment
3.5 Soil water storage and flow processes
3.6 Mathematical modelling of soil water movement
3.6.1 Soil water potential
3.6.2 Water flow
Darcy's law
3.6.3 Drainage equilibrium
3.7 Groundwater storage and flow
3.7.1 Aquifers and aquitards
3.7.2 Storage coefficient
3.7.3 Groundwater flow
3.7.4 Flow velocity
3.7.5 Preferential flowpaths
macropore flow
3.8 Streamflow generation
3.8.1 Hortonian overland flow
3.8.2 Variable source area
3.8.3 Recharge and discharge areas
3.8.4 Groundwater contribution in discharge areas
3.9 The role of topography
3.10 The HBV
model: A precipitation /runoff
model
3.10.1 The snow routine
3.10.2 The soil moisture routine
3.10.3 The runoff response routine
3.11 Model calibration and use
3.12 Components of the water budget in the Nordic countries References
4 GROUNDWATER RECHARGE David N Lemer
4.1 What is recharge?
4.1.1 Recharge and related concepts
4.1.2 Recharge in the hydrological cycle
4.1.3 Objectives of chapter
4.2 Hydrogeological environments
4.2.1 Introduction
4.2.2 Permo
Triassic sandstone of the UK
4.2.3 Scandinavian conditions
4.3 Precipitation recharge
4.3.1 Introduction
4.3.2 Lysimeters: Direct measurement
4.3.3 Empirical methods
4.3.4 Soil moisture budgeting method
4.3.5 Darcian approaches
4.3.6 Tracer techniques
4.3.7 Variability of recharge across catchments
4.3.8 Localised recharge
4.4 Recharge from rivers
4.4.1 River types
4.4.2 Rivers in contact with the water table
4.4.3 River recharge estimation methods
4.4.4 Groundwater response under ephemeral rivers
4.4.5 Water balances
4.4.6 Darcian approaches
4.4.7 Tracer techniques for groundwater recharge from river
4.5 Interaquifer flows
4.6 Net recharge over a region
4.6.1 Introduction
4.6.2 Water table rise
4.6.3 Hydrograph analysis for groundwater discharge
4.6.4 Inverse techniques
4.6.5 Aquifer
wide tracers
4.7 Concluding remarks
References
PART 2: TECHNIQUES FOR CATCHMENT STUDIES
5 CHEMICAL ANALYSIS OF ROCKS AND SOILS
Magne 0degard
5.1 Introduction
5.2 Historical development
5.3 Total analysis versus partial analysis
5.4 Analytical methods
5.4.1 X
ray fluorescence (XRF)
5.4.2 Inductively coupled plasma atomic emission spectrometry (ICP
AES)
5.4.3 Atomic absorption spectrometry (AAS)
5.5 Quality control
References
6 COLLECTION AND ANALYSIS OF GROUNDWATER SAMPLES John Mather
6.1 Introduction
6.2 Data quality
6.3 Sample collection and analysis
6.3.1 Field parameters
6.3.2 Laboratory measurements
6.3.3 Pore water analysis
6.4 Representation of data
6.5 Water quality standards
Appendix A: Prescribed concentrations or values specified in the UK Water
Supply (Water Quality) regulations 1989
References
7 ENVIRONMENTAL ISOTOPES AS TRACERS IN CATCHMENTS Sylvi Haldorsen, Gunnhild Riise, Berit Swensen & Ronald S. Sletten
7.1 Introduction
7.1.1 Environmental isotopes
7.1.2 The use of environmental isotopes in small catchments
7.2 Oxygen and hydrogen isotopes
7.2.1 Stable isotopes: 180 and 2H(D)
7.2.2 Application of 8180 and 8D in catchment studies
7.2.3 Tritium
7.3 Carbon isotopes
7.3.1 The 14C isotope
7.3.2 The 13C isotope
7.4 Nitrogen isotopes
7.4.1 Nitrogen isotope variations in precipitation
7.4.2 S15N of NO3 in the pedosphere and groundwater
7.4.3 Pollution studies in catchments and groundwater aquifers
7.5 Sulphur isotopes
7.5.1 Some examples of sulphur isotopes studies
7.6 Conclusions Acknowledgements References
8 FIELD INSTRUMENTATION
Anund Killingtveit, Knut Sand & Nils Roar Scelthun
8.1 Streamflow measurements
8.1.1 Introduction
8.1.2 Measurement of stage
8.1.3 Discharge measurement methods
8.1.4 Stage
discharge relation
8.1.5 Practical considerations
8.2 Automatic data acquisition systems in hydrology
8.2.1 Introduction
8.2.2 Main structure and system components
9 CATCHMENT MASS BALANCE James I. Drever
9.1 Introduction
9.2 Terms in the mass balance equation
9.2.1 Solutes in outflow
9.2.2 Solutes from the atmosphere
9.2.3 Changes in the exchange pool
9.2.4 Changes in the biomass
9.2.5 Chemical weathering
9.3 Mass balance and mineral weathering
9.3.1 The Sierra Nevada, California, USA
9.3.2 Absaroka mountains, Wyoming, USA
9.3.3 Adirondack mountains, New York, USA
9.3.4 Sogndal, Norway
9.4 The problem of excess calcium
9.4.1 South Cascade Glacier, Washington, USA
9.4.2 Loch Vale, Colorado, USA
9.4.3 Discussion
9.5 Conclusions
9.6 Future directions in research References
10 NATURAL ORGANIC MATTER IN CATCHMENTS James F. Ranville & Donald L. Macalady
10.1 Introduction
10.2 The nature and origin of natural organic matter
10.2.1 Nature of natural organic matter
10.2.2 Origin of natural organic matter
10.3 Geochemical reactions of natural organic matter
10.3.1 Weathering and natural organic matter in catchments
10.3.2 Development of natural organic matter profiles in catchments
10.3.3 Hydrological controls on the transport of natural organic matter
10.3.4 Redox chemistry of metal
organic complexes
10.3.5 Natural organic matter and metal ion transport
10.4 Interactions between natural organic matter and anthropogenic chemicals
10.4.1 Transport of pollutant metals as dissolved natural organic matter complexes
10.4.2 Effects of sorption /partitioning to natural organic matter on the transport of organic chemicals
10.4.3 Effects of natural organic matter on hydrolytic reactions
10.4.4 Oxidation /reduction reactions facilitated by natural organic matter
10.4.5 Colloidal natural organic matter and facilitated transport
10.4.6 Natural organic matter... sink for pollutants or facilitator of transport? Mysteries and research questions
10.5 Conclusions
10.6 Future research directions
References
11 RELATIONSHIP BETWEEN ROCK, SOIL AND GROUNDWATER COMPOSITIONS John Mather
11.1 Introduction
11.2 The source term
11.3 Factors affecting groundwater chemistry
11.4 Reactions in the unsaturated zone
11.4.1 Gas dissolution and redistribution
11.4.2 Carbonate and silicate dissolution
11.4.3 Sulphide oxidation
11.4.4 Gypsum precipitation and dissolution
11.4.5 Cation exchange
11.4.6 Organic reactions
11.5 Reactions in the saturated zone
11.5.1 Carbonate and silicate dissolution
11.5.2 Dissolution of soluble salts
11.5.3 Redox reactions
11.5.4 Cation exchange
11.6 Saline groundwaters
11.7 Groundwater compositions
11.8 Anthropogenic influences
11.8.1 Agricultural pollution
11.8.2 Industrial pollution
11.8.3 Acid rain
11.9 Conclusions
11.10 Future research
References
12 TOWARDS COUPLING HYDROLOGICAL, SOIL AND WEATHERING PROCESSES WITHIN A MODELLING PERSPECTIVE Colin Nealy Alice J. Robson & Nils Christophersen
12.1 Introduction
12.1.1 General
12.2 A case study from Wales
12.2.1 Description of the study area
12.2.2 Hydrochemistry
12.3 Sources contributing to stream flow
12.3.1 Rationale
12.3.2 Hydrograph separation
12.3.3 Hydrograph separation using continuous data
12.3.4 Conclusions concerning water mixing relationships
12.4 Chemical mixing, speciation and solubility controls for aluminium
12.4.1 Rationale
12.4.2 Modelling chemical speciation
12.4.3 Mixing model results
12.5 Modelling studies
12.5.1 Modelling background
12.5.2 Short term modelling studies
12.5.3 Long term modelling studies
12.6 Towards integrated models
12.6.1 Developing a cation exchange model accounting for soil heterogeneity
12.6.2 Summary of findings
12.7 Discussions
12.8 Recommendations
12.9 Conclusions
12.10 Future research directions
References
13 CHEMICAL CHANGES ATTENDING WATER CYCLING THROUGH
A CATCHMENT
AN OVERVIEW
Patrice de Caritat & Ola M. Saether
13.1 Introduction
13.2 The geochemical cycle
13.3 The water cycle
13.4 Every drop of rain
13.5 Soil searching
13.6 The water table
13.7 Discharge!
13.8 All the rivers run
Acknowledgements
A non
comprehensive list of useful references
LIST OF AUTHORS
INDEX.
PREFACE
PARTI: CATCHMENT PROCESSES
1 WEATHERING PROCESSES James I. Drever
1.1 Definitions of weathering
1.2 Types of weathering reaction
1.2.1 Congruent dissolution
1.2.2 Incongruent dissolution
1.3 Cation exchange
1.4 Mineral dissolution kinetics
1.4.1 Relative rates
1.4.2 Effects of solution composition on dissolution rates of silicate minerals
1.5 Comparisons between field and laboratory dissolution rates
1.6 Modeling approaches
1.7 Future research directions References
2 COMPOSITION, PROPERTIES AND DEVELOPMENT OF NORDIC SOILS Ole K Borggaard
2.1 Introduction
2.2 Soil composition
2.2.1 Soil air
2.2.2 Soil water
2.2.3 Soil organic matter (SOM)
2.2.4 Soil minerals
2.3 Soil properties
2.3.1 Physical properties
2.3.2 Chemical properties
2.4 Soil development processes
2.4.1 Decalcification
2.4.2 Gleization
2.4.3 Lessivage (clay migration)
2.4.4 Podzolization
2.5 Summary with conclusions
2.6 Future research directions
Appendix A: Definition, terminology, horizons and description of soil
Appendix B: Classification
Acknowledgement
References
3 CATCHMENT HYDROLOGY Allan Rodhe & Anund Killingtveit
3.1 Introduction
3.2 The catchment
3.3 Water balance
3.4 Runoff processes in the catchment
3.5 Soil water storage and flow processes
3.6 Mathematical modelling of soil water movement
3.6.1 Soil water potential
3.6.2 Water flow
Darcy's law
3.6.3 Drainage equilibrium
3.7 Groundwater storage and flow
3.7.1 Aquifers and aquitards
3.7.2 Storage coefficient
3.7.3 Groundwater flow
3.7.4 Flow velocity
3.7.5 Preferential flowpaths
macropore flow
3.8 Streamflow generation
3.8.1 Hortonian overland flow
3.8.2 Variable source area
3.8.3 Recharge and discharge areas
3.8.4 Groundwater contribution in discharge areas
3.9 The role of topography
3.10 The HBV
model: A precipitation /runoff
model
3.10.1 The snow routine
3.10.2 The soil moisture routine
3.10.3 The runoff response routine
3.11 Model calibration and use
3.12 Components of the water budget in the Nordic countries References
4 GROUNDWATER RECHARGE David N Lemer
4.1 What is recharge?
4.1.1 Recharge and related concepts
4.1.2 Recharge in the hydrological cycle
4.1.3 Objectives of chapter
4.2 Hydrogeological environments
4.2.1 Introduction
4.2.2 Permo
Triassic sandstone of the UK
4.2.3 Scandinavian conditions
4.3 Precipitation recharge
4.3.1 Introduction
4.3.2 Lysimeters: Direct measurement
4.3.3 Empirical methods
4.3.4 Soil moisture budgeting method
4.3.5 Darcian approaches
4.3.6 Tracer techniques
4.3.7 Variability of recharge across catchments
4.3.8 Localised recharge
4.4 Recharge from rivers
4.4.1 River types
4.4.2 Rivers in contact with the water table
4.4.3 River recharge estimation methods
4.4.4 Groundwater response under ephemeral rivers
4.4.5 Water balances
4.4.6 Darcian approaches
4.4.7 Tracer techniques for groundwater recharge from river
4.5 Interaquifer flows
4.6 Net recharge over a region
4.6.1 Introduction
4.6.2 Water table rise
4.6.3 Hydrograph analysis for groundwater discharge
4.6.4 Inverse techniques
4.6.5 Aquifer
wide tracers
4.7 Concluding remarks
References
PART 2: TECHNIQUES FOR CATCHMENT STUDIES
5 CHEMICAL ANALYSIS OF ROCKS AND SOILS
Magne 0degard
5.1 Introduction
5.2 Historical development
5.3 Total analysis versus partial analysis
5.4 Analytical methods
5.4.1 X
ray fluorescence (XRF)
5.4.2 Inductively coupled plasma atomic emission spectrometry (ICP
AES)
5.4.3 Atomic absorption spectrometry (AAS)
5.5 Quality control
References
6 COLLECTION AND ANALYSIS OF GROUNDWATER SAMPLES John Mather
6.1 Introduction
6.2 Data quality
6.3 Sample collection and analysis
6.3.1 Field parameters
6.3.2 Laboratory measurements
6.3.3 Pore water analysis
6.4 Representation of data
6.5 Water quality standards
Appendix A: Prescribed concentrations or values specified in the UK Water
Supply (Water Quality) regulations 1989
References
7 ENVIRONMENTAL ISOTOPES AS TRACERS IN CATCHMENTS Sylvi Haldorsen, Gunnhild Riise, Berit Swensen & Ronald S. Sletten
7.1 Introduction
7.1.1 Environmental isotopes
7.1.2 The use of environmental isotopes in small catchments
7.2 Oxygen and hydrogen isotopes
7.2.1 Stable isotopes: 180 and 2H(D)
7.2.2 Application of 8180 and 8D in catchment studies
7.2.3 Tritium
7.3 Carbon isotopes
7.3.1 The 14C isotope
7.3.2 The 13C isotope
7.4 Nitrogen isotopes
7.4.1 Nitrogen isotope variations in precipitation
7.4.2 S15N of NO3 in the pedosphere and groundwater
7.4.3 Pollution studies in catchments and groundwater aquifers
7.5 Sulphur isotopes
7.5.1 Some examples of sulphur isotopes studies
7.6 Conclusions Acknowledgements References
8 FIELD INSTRUMENTATION
Anund Killingtveit, Knut Sand & Nils Roar Scelthun
8.1 Streamflow measurements
8.1.1 Introduction
8.1.2 Measurement of stage
8.1.3 Discharge measurement methods
8.1.4 Stage
discharge relation
8.1.5 Practical considerations
8.2 Automatic data acquisition systems in hydrology
8.2.1 Introduction
8.2.2 Main structure and system components
9 CATCHMENT MASS BALANCE James I. Drever
9.1 Introduction
9.2 Terms in the mass balance equation
9.2.1 Solutes in outflow
9.2.2 Solutes from the atmosphere
9.2.3 Changes in the exchange pool
9.2.4 Changes in the biomass
9.2.5 Chemical weathering
9.3 Mass balance and mineral weathering
9.3.1 The Sierra Nevada, California, USA
9.3.2 Absaroka mountains, Wyoming, USA
9.3.3 Adirondack mountains, New York, USA
9.3.4 Sogndal, Norway
9.4 The problem of excess calcium
9.4.1 South Cascade Glacier, Washington, USA
9.4.2 Loch Vale, Colorado, USA
9.4.3 Discussion
9.5 Conclusions
9.6 Future directions in research References
10 NATURAL ORGANIC MATTER IN CATCHMENTS James F. Ranville & Donald L. Macalady
10.1 Introduction
10.2 The nature and origin of natural organic matter
10.2.1 Nature of natural organic matter
10.2.2 Origin of natural organic matter
10.3 Geochemical reactions of natural organic matter
10.3.1 Weathering and natural organic matter in catchments
10.3.2 Development of natural organic matter profiles in catchments
10.3.3 Hydrological controls on the transport of natural organic matter
10.3.4 Redox chemistry of metal
organic complexes
10.3.5 Natural organic matter and metal ion transport
10.4 Interactions between natural organic matter and anthropogenic chemicals
10.4.1 Transport of pollutant metals as dissolved natural organic matter complexes
10.4.2 Effects of sorption /partitioning to natural organic matter on the transport of organic chemicals
10.4.3 Effects of natural organic matter on hydrolytic reactions
10.4.4 Oxidation /reduction reactions facilitated by natural organic matter
10.4.5 Colloidal natural organic matter and facilitated transport
10.4.6 Natural organic matter... sink for pollutants or facilitator of transport? Mysteries and research questions
10.5 Conclusions
10.6 Future research directions
References
11 RELATIONSHIP BETWEEN ROCK, SOIL AND GROUNDWATER COMPOSITIONS John Mather
11.1 Introduction
11.2 The source term
11.3 Factors affecting groundwater chemistry
11.4 Reactions in the unsaturated zone
11.4.1 Gas dissolution and redistribution
11.4.2 Carbonate and silicate dissolution
11.4.3 Sulphide oxidation
11.4.4 Gypsum precipitation and dissolution
11.4.5 Cation exchange
11.4.6 Organic reactions
11.5 Reactions in the saturated zone
11.5.1 Carbonate and silicate dissolution
11.5.2 Dissolution of soluble salts
11.5.3 Redox reactions
11.5.4 Cation exchange
11.6 Saline groundwaters
11.7 Groundwater compositions
11.8 Anthropogenic influences
11.8.1 Agricultural pollution
11.8.2 Industrial pollution
11.8.3 Acid rain
11.9 Conclusions
11.10 Future research
References
12 TOWARDS COUPLING HYDROLOGICAL, SOIL AND WEATHERING PROCESSES WITHIN A MODELLING PERSPECTIVE Colin Nealy Alice J. Robson & Nils Christophersen
12.1 Introduction
12.1.1 General
12.2 A case study from Wales
12.2.1 Description of the study area
12.2.2 Hydrochemistry
12.3 Sources contributing to stream flow
12.3.1 Rationale
12.3.2 Hydrograph separation
12.3.3 Hydrograph separation using continuous data
12.3.4 Conclusions concerning water mixing relationships
12.4 Chemical mixing, speciation and solubility controls for aluminium
12.4.1 Rationale
12.4.2 Modelling chemical speciation
12.4.3 Mixing model results
12.5 Modelling studies
12.5.1 Modelling background
12.5.2 Short term modelling studies
12.5.3 Long term modelling studies
12.6 Towards integrated models
12.6.1 Developing a cation exchange model accounting for soil heterogeneity
12.6.2 Summary of findings
12.7 Discussions
12.8 Recommendations
12.9 Conclusions
12.10 Future research directions
References
13 CHEMICAL CHANGES ATTENDING WATER CYCLING THROUGH
A CATCHMENT
AN OVERVIEW
Patrice de Caritat & Ola M. Saether
13.1 Introduction
13.2 The geochemical cycle
13.3 The water cycle
13.4 Every drop of rain
13.5 Soil searching
13.6 The water table
13.7 Discharge!
13.8 All the rivers run
Acknowledgements
A non
comprehensive list of useful references
LIST OF AUTHORS
INDEX.
PARTI: CATCHMENT PROCESSES
1 WEATHERING PROCESSES James I. Drever
1.1 Definitions of weathering
1.2 Types of weathering reaction
1.2.1 Congruent dissolution
1.2.2 Incongruent dissolution
1.3 Cation exchange
1.4 Mineral dissolution kinetics
1.4.1 Relative rates
1.4.2 Effects of solution composition on dissolution rates of silicate minerals
1.5 Comparisons between field and laboratory dissolution rates
1.6 Modeling approaches
1.7 Future research directions References
2 COMPOSITION, PROPERTIES AND DEVELOPMENT OF NORDIC SOILS Ole K Borggaard
2.1 Introduction
2.2 Soil composition
2.2.1 Soil air
2.2.2 Soil water
2.2.3 Soil organic matter (SOM)
2.2.4 Soil minerals
2.3 Soil properties
2.3.1 Physical properties
2.3.2 Chemical properties
2.4 Soil development processes
2.4.1 Decalcification
2.4.2 Gleization
2.4.3 Lessivage (clay migration)
2.4.4 Podzolization
2.5 Summary with conclusions
2.6 Future research directions
Appendix A: Definition, terminology, horizons and description of soil
Appendix B: Classification
Acknowledgement
References
3 CATCHMENT HYDROLOGY Allan Rodhe & Anund Killingtveit
3.1 Introduction
3.2 The catchment
3.3 Water balance
3.4 Runoff processes in the catchment
3.5 Soil water storage and flow processes
3.6 Mathematical modelling of soil water movement
3.6.1 Soil water potential
3.6.2 Water flow
Darcy's law
3.6.3 Drainage equilibrium
3.7 Groundwater storage and flow
3.7.1 Aquifers and aquitards
3.7.2 Storage coefficient
3.7.3 Groundwater flow
3.7.4 Flow velocity
3.7.5 Preferential flowpaths
macropore flow
3.8 Streamflow generation
3.8.1 Hortonian overland flow
3.8.2 Variable source area
3.8.3 Recharge and discharge areas
3.8.4 Groundwater contribution in discharge areas
3.9 The role of topography
3.10 The HBV
model: A precipitation /runoff
model
3.10.1 The snow routine
3.10.2 The soil moisture routine
3.10.3 The runoff response routine
3.11 Model calibration and use
3.12 Components of the water budget in the Nordic countries References
4 GROUNDWATER RECHARGE David N Lemer
4.1 What is recharge?
4.1.1 Recharge and related concepts
4.1.2 Recharge in the hydrological cycle
4.1.3 Objectives of chapter
4.2 Hydrogeological environments
4.2.1 Introduction
4.2.2 Permo
Triassic sandstone of the UK
4.2.3 Scandinavian conditions
4.3 Precipitation recharge
4.3.1 Introduction
4.3.2 Lysimeters: Direct measurement
4.3.3 Empirical methods
4.3.4 Soil moisture budgeting method
4.3.5 Darcian approaches
4.3.6 Tracer techniques
4.3.7 Variability of recharge across catchments
4.3.8 Localised recharge
4.4 Recharge from rivers
4.4.1 River types
4.4.2 Rivers in contact with the water table
4.4.3 River recharge estimation methods
4.4.4 Groundwater response under ephemeral rivers
4.4.5 Water balances
4.4.6 Darcian approaches
4.4.7 Tracer techniques for groundwater recharge from river
4.5 Interaquifer flows
4.6 Net recharge over a region
4.6.1 Introduction
4.6.2 Water table rise
4.6.3 Hydrograph analysis for groundwater discharge
4.6.4 Inverse techniques
4.6.5 Aquifer
wide tracers
4.7 Concluding remarks
References
PART 2: TECHNIQUES FOR CATCHMENT STUDIES
5 CHEMICAL ANALYSIS OF ROCKS AND SOILS
Magne 0degard
5.1 Introduction
5.2 Historical development
5.3 Total analysis versus partial analysis
5.4 Analytical methods
5.4.1 X
ray fluorescence (XRF)
5.4.2 Inductively coupled plasma atomic emission spectrometry (ICP
AES)
5.4.3 Atomic absorption spectrometry (AAS)
5.5 Quality control
References
6 COLLECTION AND ANALYSIS OF GROUNDWATER SAMPLES John Mather
6.1 Introduction
6.2 Data quality
6.3 Sample collection and analysis
6.3.1 Field parameters
6.3.2 Laboratory measurements
6.3.3 Pore water analysis
6.4 Representation of data
6.5 Water quality standards
Appendix A: Prescribed concentrations or values specified in the UK Water
Supply (Water Quality) regulations 1989
References
7 ENVIRONMENTAL ISOTOPES AS TRACERS IN CATCHMENTS Sylvi Haldorsen, Gunnhild Riise, Berit Swensen & Ronald S. Sletten
7.1 Introduction
7.1.1 Environmental isotopes
7.1.2 The use of environmental isotopes in small catchments
7.2 Oxygen and hydrogen isotopes
7.2.1 Stable isotopes: 180 and 2H(D)
7.2.2 Application of 8180 and 8D in catchment studies
7.2.3 Tritium
7.3 Carbon isotopes
7.3.1 The 14C isotope
7.3.2 The 13C isotope
7.4 Nitrogen isotopes
7.4.1 Nitrogen isotope variations in precipitation
7.4.2 S15N of NO3 in the pedosphere and groundwater
7.4.3 Pollution studies in catchments and groundwater aquifers
7.5 Sulphur isotopes
7.5.1 Some examples of sulphur isotopes studies
7.6 Conclusions Acknowledgements References
8 FIELD INSTRUMENTATION
Anund Killingtveit, Knut Sand & Nils Roar Scelthun
8.1 Streamflow measurements
8.1.1 Introduction
8.1.2 Measurement of stage
8.1.3 Discharge measurement methods
8.1.4 Stage
discharge relation
8.1.5 Practical considerations
8.2 Automatic data acquisition systems in hydrology
8.2.1 Introduction
8.2.2 Main structure and system components
9 CATCHMENT MASS BALANCE James I. Drever
9.1 Introduction
9.2 Terms in the mass balance equation
9.2.1 Solutes in outflow
9.2.2 Solutes from the atmosphere
9.2.3 Changes in the exchange pool
9.2.4 Changes in the biomass
9.2.5 Chemical weathering
9.3 Mass balance and mineral weathering
9.3.1 The Sierra Nevada, California, USA
9.3.2 Absaroka mountains, Wyoming, USA
9.3.3 Adirondack mountains, New York, USA
9.3.4 Sogndal, Norway
9.4 The problem of excess calcium
9.4.1 South Cascade Glacier, Washington, USA
9.4.2 Loch Vale, Colorado, USA
9.4.3 Discussion
9.5 Conclusions
9.6 Future directions in research References
10 NATURAL ORGANIC MATTER IN CATCHMENTS James F. Ranville & Donald L. Macalady
10.1 Introduction
10.2 The nature and origin of natural organic matter
10.2.1 Nature of natural organic matter
10.2.2 Origin of natural organic matter
10.3 Geochemical reactions of natural organic matter
10.3.1 Weathering and natural organic matter in catchments
10.3.2 Development of natural organic matter profiles in catchments
10.3.3 Hydrological controls on the transport of natural organic matter
10.3.4 Redox chemistry of metal
organic complexes
10.3.5 Natural organic matter and metal ion transport
10.4 Interactions between natural organic matter and anthropogenic chemicals
10.4.1 Transport of pollutant metals as dissolved natural organic matter complexes
10.4.2 Effects of sorption /partitioning to natural organic matter on the transport of organic chemicals
10.4.3 Effects of natural organic matter on hydrolytic reactions
10.4.4 Oxidation /reduction reactions facilitated by natural organic matter
10.4.5 Colloidal natural organic matter and facilitated transport
10.4.6 Natural organic matter... sink for pollutants or facilitator of transport? Mysteries and research questions
10.5 Conclusions
10.6 Future research directions
References
11 RELATIONSHIP BETWEEN ROCK, SOIL AND GROUNDWATER COMPOSITIONS John Mather
11.1 Introduction
11.2 The source term
11.3 Factors affecting groundwater chemistry
11.4 Reactions in the unsaturated zone
11.4.1 Gas dissolution and redistribution
11.4.2 Carbonate and silicate dissolution
11.4.3 Sulphide oxidation
11.4.4 Gypsum precipitation and dissolution
11.4.5 Cation exchange
11.4.6 Organic reactions
11.5 Reactions in the saturated zone
11.5.1 Carbonate and silicate dissolution
11.5.2 Dissolution of soluble salts
11.5.3 Redox reactions
11.5.4 Cation exchange
11.6 Saline groundwaters
11.7 Groundwater compositions
11.8 Anthropogenic influences
11.8.1 Agricultural pollution
11.8.2 Industrial pollution
11.8.3 Acid rain
11.9 Conclusions
11.10 Future research
References
12 TOWARDS COUPLING HYDROLOGICAL, SOIL AND WEATHERING PROCESSES WITHIN A MODELLING PERSPECTIVE Colin Nealy Alice J. Robson & Nils Christophersen
12.1 Introduction
12.1.1 General
12.2 A case study from Wales
12.2.1 Description of the study area
12.2.2 Hydrochemistry
12.3 Sources contributing to stream flow
12.3.1 Rationale
12.3.2 Hydrograph separation
12.3.3 Hydrograph separation using continuous data
12.3.4 Conclusions concerning water mixing relationships
12.4 Chemical mixing, speciation and solubility controls for aluminium
12.4.1 Rationale
12.4.2 Modelling chemical speciation
12.4.3 Mixing model results
12.5 Modelling studies
12.5.1 Modelling background
12.5.2 Short term modelling studies
12.5.3 Long term modelling studies
12.6 Towards integrated models
12.6.1 Developing a cation exchange model accounting for soil heterogeneity
12.6.2 Summary of findings
12.7 Discussions
12.8 Recommendations
12.9 Conclusions
12.10 Future research directions
References
13 CHEMICAL CHANGES ATTENDING WATER CYCLING THROUGH
A CATCHMENT
AN OVERVIEW
Patrice de Caritat & Ola M. Saether
13.1 Introduction
13.2 The geochemical cycle
13.3 The water cycle
13.4 Every drop of rain
13.5 Soil searching
13.6 The water table
13.7 Discharge!
13.8 All the rivers run
Acknowledgements
A non
comprehensive list of useful references
LIST OF AUTHORS
INDEX.