Alle Infos zum eBook verschenken
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
CO2 capture and geological storage is seen as the most effective technology to rapidly reduce the emission of greenhouse gases into the atmosphere. Up until now and before proceeding to an industrial development of this technology, laboratory research has been conducted for several years and pilot projects have been launched. So far, these studies have mainly focused on transport and geochemical issues and few studies have been dedicated to the geomechanical issues in CO2 storage facilities. The purpose of this book is to give an overview of the multiphysics processes occurring in CO2 storage…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.62MB
- Gilles Pijaudier-CabotGeomechanics in CO2 Storage Facilities (eBook, PDF)139,99 €
- Eunika Mercier-LaurentThe Innovation Biosphere (eBook, ePUB)139,99 €
- Structure Design and Degradation Mechanisms in Coastal Environments (eBook, ePUB)139,99 €
- Hervé HerbinInfrared Observation of Earth's Atmosphere (eBook, ePUB)139,99 €
- Sylvain PiochEco-design of Marine Infrastructures (eBook, ePUB)139,99 €
- Martin MarriottNalluri And Featherstone's Civil Engineering Hydraulics (eBook, ePUB)37,99 €
- Mark GorgolewskiResource Salvation (eBook, ePUB)71,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley-Blackwell
- Seitenzahl: 248
- Erscheinungstermin: 29. Januar 2013
- Englisch
- ISBN-13: 9781118577455
- Artikelnr.: 38247312
- Verlag: Wiley-Blackwell
- Seitenzahl: 248
- Erscheinungstermin: 29. Januar 2013
- Englisch
- ISBN-13: 9781118577455
- Artikelnr.: 38247312
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
PART 1. TRANSPORT PROCESSES 1
Chapter 1. Assessing Seal Rock Integrity for CO2 Geological Storage
Purposes 3
Daniel BROSETA
1.1. Introduction 3
1.2. Gas breakthrough experiments in water-saturated rocks 6
1.3. Interfacial properties involved in seal rock integrity 9
1.3.1. Brine-gas IFT 9
1.3.2. Wetting behavior 10
1.4. Maximum bottomhole pressure for storage in a depleted hydrocarbon
reservoir 12
1.5. Evidences for capillary fracturing in seal rocks 13
1.6. Summary and prospects 14
1.7. Bibliography 15
Chapter 2. Gas Migration through Clay Barriers in the Context of
Radioactive Waste Disposal: Numerical Modeling of an In Situ Gas Injection
Test 21
Pierre GÉRARD, Jean-Pol RADU, Jean TALANDIER, Rémi de La VAISSIÈRE, Robert
CHARLIER and Frédéric COLLIN
2.1. Introduction 21
2.2. Field experiment description 23
2.3. Boundary value problem 26
2.3.1. 1D and 3D geometry and boundary conditions 26
2.3.2. Hydraulic model 27
2.3.3. Hydraulic parameters 28
2.4. Numerical results 29
2.4.1. 1D modeling 30
2.4.2. 3D modeling 34
2.5. Discussion and conclusions 37
2.6. Bibliography 39
Chapter 3. Upscaling Permeation Properties in Porous Materials from Pore
Size Distributions 43
Fadi KHADDOUR, David GRÉGOIRE and Gilles PIJAUDIER-CABOT
3.1. Introduction 43
3.2. Assembly of parallel pores 44
3.2.1. Presentation 44
3.2.2. Permeability 45
3.2.3. Case of a sinusoidal multi-modal pore size distribution 47
3.3. Mixed assembly of parallel and series pores 48
3.3.1. Presentation 48
3.3.2. Permeability 49
3.4. Comparisons with experimental results 51
3.4.1. Electrical fracturing tests 51
3.4.2. Measurement of the pore size distribution 53
3.4.3. Model capabilities to predict permeability and comparisons with
experiments 54
3.5. Conclusions 55
3.6. Acknowledgments 55
3.7. Bibliography 56
PART 2. FRACTURE, DEFORMATION AND COUPLED EFFECTS 57
Chapter 4. A Non-Local Damage Model for Heterogeneous Rocks - Application
to Rock Fracturing Evaluation Under Gas Injection Conditions 59
Darius M. SEYEDI, Nicolas GUY, Serigne SY, Sylvie GRANET and François HILD
4.1. Introduction 60
4.2. A probabilistic non-local model for rock fracturing 61
4.3. Hydromechanical coupling scheme 63
4.4. Application example and results 66
4.4.1. Effect of Weibull modulus 70
4.5. Conclusions and perspectives 70
4.6. Acknowledgments 71
4.7. Bibliography 71
Chapter 5. Caprock Breach: A Potential Threat to Secure Geologic
Sequestration of CO2 75
A.P.S. SELVADURAI
5.1. Introduction 75
5.2. Caprock flexure during injection 77
5.2.1. Numerical results for the caprock-geologic media interaction 81
5.3. Fluid leakage from a fracture in the caprock 85
5.3.1. Numerical results for fluid leakage from a fracture in the
caprock 89
5.4. Concluding remarks 90
5.5. Acknowledgment 91
5.6. Bibliography 91
Chapter 6. Shear Behavior Evolution of a Fault due to Chemical Degradation
of Roughness: Application to the Geological Storage of CO2 95
Olivier NOUAILLETAS, Céline PERLOT, Christian LA BORDERIE, Baptiste
ROUSSEAU and Gérard BALLIVY
6.1. Introduction 96
6.2. Experimental setup 97
6.3. Roughness and chemical attack 99
6.4. Shear tests 103
6.5. Peak shear strength and peak shear displacement: Barton's model 107
6.6. Conclusion and perspectives 112
6.7. Acknowledgment 113
6.8. Bibliography 113
Chapter 7. CO2 Storage in Coal Seams: Coupling Surface Adsorption and
Strain 115
Saeid NIKOOSOKHAN, Laurent BROCHARD, Matthieu VANDAMME, Patrick DANGLA,
Roland J.-M. PELLENQ, Brice LECAMPION and Teddy FEN-CHONG
7.1. Introduction 115
7.2. Poromechanical model for coal bed reservoir 116
7.2.1. Physics of adsorption-induced swelling of coal 116
7.2.2. Assumptions of model for coal bed reservoir 118
7.2.3. Case of coal bed reservoir with no adsorption 118
7.2.4. Derivation of constitutive equations for coal bed reservoir with
adsorption 120
7.3. Simulations 122
7.3.1. Simulations at the molecular scale: adsorption of carbon dioxide on
coal 122
7.3.2. Simulations at the scale of the reservoir 124
7.3.3. Discussion 127
7.4. Conclusions 128
7.5. Bibliography 129
PART 3. AGING AND INTEGRITY 133
Chapter 8. Modeling by Homogenization of the Long-Term Rock Dissolution and
Geomechanical Effects 135
Jolanta LEWANDOWSKA
8.1. Introduction 135
8.2. Microstructure and modeling by homogenization 136
8.3. Homogenization of the H-M-T problem 138
8.3.1. Formulation of the problem at the microscopic scale 138
8.3.2. Asymptotic developments method 142
8.3.3. Solutions 143
8.3.4. Summary of the macroscopic "H-M-T model" 148
8.4. Homogenization of the C-M problem 148
8.4.1. Formulation of the problem at the microscopic scale 148
8.4.2. Homogenization 150
8.4.3. Summary of the macroscopic "C-M model" 151
8.5. Numerical computations of the time degradation of the macroscopic
rigidity tensor 152
8.5.1. Definition of the problem 152
8.5.2. Results and discussion 154
8.6. Conclusions 158
8.7. Acknowledgment 160
8.8. Bibliography 160
Chapter 9. Chemoplastic Modeling of Petroleum Cement Paste under Coupled
Conditions 163
Jian Fu SHAO, Y. JIA, Nicholas BURLION, Jeremy SAINT-MARC and Adeline
GARNIER
9.1. Introduction 163
9.2. General framework for chemo-mechanical modeling 164
9.2.1. Phenomenological chemistry model 166
9.3. Specific plastic model for petroleum cement paste 169
9.3.1. Elastic behavior 169
9.3.2. Plastic pore collapse model 170
9.3.3. Plastic shearing model 172
9.4. Validation of model 174
9.5. Conclusions and perspectives 178
9.6. Bibliography 179
Chapter 10. Reactive Transport Modeling of CO2 Through Cementitious
Materials Under Supercritical Boundary Conditions 181
Jitun SHEN, Patrick DANGLA and Mickaël THIERY
10.1. Introduction 181
10.2. Carbonation of cement-based materials 183
10.2.1. Solubility of the supercritical CO2 in the pore solution 183
10.2.2. Chemical reactions 184
10.2.3. Carbonation of CH 185
10.2.4. Carbonation of C-S-H 187
10.2.5. Porosity change 190
10.3. Reactive transport modeling 191
10.3.1. Field equations 191
10.3.2. Transport of the liquid phase 194
10.3.3. Transport of the gas phase 194
10.3.4. Transport of aqueous species 196
10.4. Simulation results and discussion 196
10.4.1. Sandstone-like conditions 197
10.4.2. Limestone-like conditions 198
10.4.3. Study of CO2 concentration and initial porosity 199
10.4.4. Supercritical boundary conditions 201
10.5. Conclusion 204
10.6. Acknowledgment 205
10.7. Bibliography 205
Chapter 11. Chemo-Poromechanical Study of Wellbore Cement Integrity 209
Jean-Michel PEREIRA and Valérie VALLIN
11.1. Introduction 209
11.2. Poromechanics of cement carbonation in the context of CO2 storage 210
11.2.1. Context and definitions 210
11.2.2. Chemical reactions 214
11.2.3. Chemo-poromechanical behaviour 217
11.2.4. Balance equations 221
11.3. Application to wellbore cement 222
11.3.1. Description of the problem 222
11.3.2. Initial state and boundary conditions 223
11.3.3. Illustrative results 223
11.4. Conclusion 227
11.5. Acknowledgments 227
11.6. Bibliography 227
List of Authors 229
Index 000
PART 1. TRANSPORT PROCESSES 1
Chapter 1. Assessing Seal Rock Integrity for CO2 Geological Storage
Purposes 3
Daniel BROSETA
1.1. Introduction 3
1.2. Gas breakthrough experiments in water-saturated rocks 6
1.3. Interfacial properties involved in seal rock integrity 9
1.3.1. Brine-gas IFT 9
1.3.2. Wetting behavior 10
1.4. Maximum bottomhole pressure for storage in a depleted hydrocarbon
reservoir 12
1.5. Evidences for capillary fracturing in seal rocks 13
1.6. Summary and prospects 14
1.7. Bibliography 15
Chapter 2. Gas Migration through Clay Barriers in the Context of
Radioactive Waste Disposal: Numerical Modeling of an In Situ Gas Injection
Test 21
Pierre GÉRARD, Jean-Pol RADU, Jean TALANDIER, Rémi de La VAISSIÈRE, Robert
CHARLIER and Frédéric COLLIN
2.1. Introduction 21
2.2. Field experiment description 23
2.3. Boundary value problem 26
2.3.1. 1D and 3D geometry and boundary conditions 26
2.3.2. Hydraulic model 27
2.3.3. Hydraulic parameters 28
2.4. Numerical results 29
2.4.1. 1D modeling 30
2.4.2. 3D modeling 34
2.5. Discussion and conclusions 37
2.6. Bibliography 39
Chapter 3. Upscaling Permeation Properties in Porous Materials from Pore
Size Distributions 43
Fadi KHADDOUR, David GRÉGOIRE and Gilles PIJAUDIER-CABOT
3.1. Introduction 43
3.2. Assembly of parallel pores 44
3.2.1. Presentation 44
3.2.2. Permeability 45
3.2.3. Case of a sinusoidal multi-modal pore size distribution 47
3.3. Mixed assembly of parallel and series pores 48
3.3.1. Presentation 48
3.3.2. Permeability 49
3.4. Comparisons with experimental results 51
3.4.1. Electrical fracturing tests 51
3.4.2. Measurement of the pore size distribution 53
3.4.3. Model capabilities to predict permeability and comparisons with
experiments 54
3.5. Conclusions 55
3.6. Acknowledgments 55
3.7. Bibliography 56
PART 2. FRACTURE, DEFORMATION AND COUPLED EFFECTS 57
Chapter 4. A Non-Local Damage Model for Heterogeneous Rocks - Application
to Rock Fracturing Evaluation Under Gas Injection Conditions 59
Darius M. SEYEDI, Nicolas GUY, Serigne SY, Sylvie GRANET and François HILD
4.1. Introduction 60
4.2. A probabilistic non-local model for rock fracturing 61
4.3. Hydromechanical coupling scheme 63
4.4. Application example and results 66
4.4.1. Effect of Weibull modulus 70
4.5. Conclusions and perspectives 70
4.6. Acknowledgments 71
4.7. Bibliography 71
Chapter 5. Caprock Breach: A Potential Threat to Secure Geologic
Sequestration of CO2 75
A.P.S. SELVADURAI
5.1. Introduction 75
5.2. Caprock flexure during injection 77
5.2.1. Numerical results for the caprock-geologic media interaction 81
5.3. Fluid leakage from a fracture in the caprock 85
5.3.1. Numerical results for fluid leakage from a fracture in the
caprock 89
5.4. Concluding remarks 90
5.5. Acknowledgment 91
5.6. Bibliography 91
Chapter 6. Shear Behavior Evolution of a Fault due to Chemical Degradation
of Roughness: Application to the Geological Storage of CO2 95
Olivier NOUAILLETAS, Céline PERLOT, Christian LA BORDERIE, Baptiste
ROUSSEAU and Gérard BALLIVY
6.1. Introduction 96
6.2. Experimental setup 97
6.3. Roughness and chemical attack 99
6.4. Shear tests 103
6.5. Peak shear strength and peak shear displacement: Barton's model 107
6.6. Conclusion and perspectives 112
6.7. Acknowledgment 113
6.8. Bibliography 113
Chapter 7. CO2 Storage in Coal Seams: Coupling Surface Adsorption and
Strain 115
Saeid NIKOOSOKHAN, Laurent BROCHARD, Matthieu VANDAMME, Patrick DANGLA,
Roland J.-M. PELLENQ, Brice LECAMPION and Teddy FEN-CHONG
7.1. Introduction 115
7.2. Poromechanical model for coal bed reservoir 116
7.2.1. Physics of adsorption-induced swelling of coal 116
7.2.2. Assumptions of model for coal bed reservoir 118
7.2.3. Case of coal bed reservoir with no adsorption 118
7.2.4. Derivation of constitutive equations for coal bed reservoir with
adsorption 120
7.3. Simulations 122
7.3.1. Simulations at the molecular scale: adsorption of carbon dioxide on
coal 122
7.3.2. Simulations at the scale of the reservoir 124
7.3.3. Discussion 127
7.4. Conclusions 128
7.5. Bibliography 129
PART 3. AGING AND INTEGRITY 133
Chapter 8. Modeling by Homogenization of the Long-Term Rock Dissolution and
Geomechanical Effects 135
Jolanta LEWANDOWSKA
8.1. Introduction 135
8.2. Microstructure and modeling by homogenization 136
8.3. Homogenization of the H-M-T problem 138
8.3.1. Formulation of the problem at the microscopic scale 138
8.3.2. Asymptotic developments method 142
8.3.3. Solutions 143
8.3.4. Summary of the macroscopic "H-M-T model" 148
8.4. Homogenization of the C-M problem 148
8.4.1. Formulation of the problem at the microscopic scale 148
8.4.2. Homogenization 150
8.4.3. Summary of the macroscopic "C-M model" 151
8.5. Numerical computations of the time degradation of the macroscopic
rigidity tensor 152
8.5.1. Definition of the problem 152
8.5.2. Results and discussion 154
8.6. Conclusions 158
8.7. Acknowledgment 160
8.8. Bibliography 160
Chapter 9. Chemoplastic Modeling of Petroleum Cement Paste under Coupled
Conditions 163
Jian Fu SHAO, Y. JIA, Nicholas BURLION, Jeremy SAINT-MARC and Adeline
GARNIER
9.1. Introduction 163
9.2. General framework for chemo-mechanical modeling 164
9.2.1. Phenomenological chemistry model 166
9.3. Specific plastic model for petroleum cement paste 169
9.3.1. Elastic behavior 169
9.3.2. Plastic pore collapse model 170
9.3.3. Plastic shearing model 172
9.4. Validation of model 174
9.5. Conclusions and perspectives 178
9.6. Bibliography 179
Chapter 10. Reactive Transport Modeling of CO2 Through Cementitious
Materials Under Supercritical Boundary Conditions 181
Jitun SHEN, Patrick DANGLA and Mickaël THIERY
10.1. Introduction 181
10.2. Carbonation of cement-based materials 183
10.2.1. Solubility of the supercritical CO2 in the pore solution 183
10.2.2. Chemical reactions 184
10.2.3. Carbonation of CH 185
10.2.4. Carbonation of C-S-H 187
10.2.5. Porosity change 190
10.3. Reactive transport modeling 191
10.3.1. Field equations 191
10.3.2. Transport of the liquid phase 194
10.3.3. Transport of the gas phase 194
10.3.4. Transport of aqueous species 196
10.4. Simulation results and discussion 196
10.4.1. Sandstone-like conditions 197
10.4.2. Limestone-like conditions 198
10.4.3. Study of CO2 concentration and initial porosity 199
10.4.4. Supercritical boundary conditions 201
10.5. Conclusion 204
10.6. Acknowledgment 205
10.7. Bibliography 205
Chapter 11. Chemo-Poromechanical Study of Wellbore Cement Integrity 209
Jean-Michel PEREIRA and Valérie VALLIN
11.1. Introduction 209
11.2. Poromechanics of cement carbonation in the context of CO2 storage 210
11.2.1. Context and definitions 210
11.2.2. Chemical reactions 214
11.2.3. Chemo-poromechanical behaviour 217
11.2.4. Balance equations 221
11.3. Application to wellbore cement 222
11.3.1. Description of the problem 222
11.3.2. Initial state and boundary conditions 223
11.3.3. Illustrative results 223
11.4. Conclusion 227
11.5. Acknowledgments 227
11.6. Bibliography 227
List of Authors 229
Index 000