Arnold
Geometrische Methoden in der Theorie der gewöhnlichen Differentialgleichungen (eBook, PDF)
-23%11
49,99 €
64,99 €**
49,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
25 °P sammeln
-23%11
49,99 €
64,99 €**
49,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
25 °P sammeln
Als Download kaufen
64,99 €****
-23%11
49,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
25 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
64,99 €****
-23%11
49,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
25 °P sammeln
Arnold
Geometrische Methoden in der Theorie der gewöhnlichen Differentialgleichungen (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 33.65MB
Andere Kunden interessierten sich auch für
- -41%11Heinrich BraunerDifferentialgeometrie (eBook, PDF)38,66 €
- Hermann WeylRiemanns geometrische Ideen, ihre Auswirkung und ihre Verknüpfung mit der Gruppentheorie (eBook, PDF)42,99 €
- -45%11Manfredo P. ~do Carmo & xcDifferentialgeometrie von Kurven und Flächen (eBook, PDF)33,26 €
- -25%11F. PittnauerVorlesungen über asymptotische Reihen (eBook, PDF)14,99 €
- -25%11H. HuckBeweismethoden der Differentialgeometrie im Großen (eBook, PDF)14,99 €
- -40%11Detlef GromollRiemannsche Geometrie im Großen (eBook, PDF)26,96 €
- -22%11J. A. SchoutenDer Ricci-Kalkül (eBook, PDF)42,99 €
- -28%11
- -22%11
- -22%11
Produktdetails
- Verlag: Springer Basel
- Seitenzahl: 320
- Erscheinungstermin: 12. März 2013
- Deutsch
- ISBN-13: 9783034871259
- Artikelnr.: 53157616
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Spezielle Gleichungen.- 1.1. Differentialgleichungen, die bezüglich Symmetriegruppen invariant bleiben.- 1.2. Die Auflösung der Singularitäten von Differentialgleichungen.- 1.3. Implizite Differentialgleichungen.- 1.4. Die Normalform einer impliziten Differentialgleichung in der Umgebung eines regulären singulären Punktes.- 1.5. Die zeitfreie Schrödinger-Gleichung.- 1.6. Die Geometrie einer Differentialgleichung zweiter Ordnung und die Geometrie eines Paares von Richtungsfeldern im dreidimensionalen Raum.- 2. Partielle Differentialgleichungen erster Ordnung.- 2.1. Lineare und quasilineare partielle Differentialgleichungen erster Ordnung.- 2.2. Nichtlineare partielle Gleichungen erster Ordnung.- 2.3. Der Satz von Frobenius.- 3. Strukturstabilität.- 3.1. Der Begriff der Strukturstabilität.- 3.2. Differentialgleichungen auf dem Torus.- 3.3. Die analytische Reduktion analytischer Diffeomorphismen der Kreislinie auf Drehungen.- 3.4. Einführung in die hyperbolische Theorie.- 3.5. Anosov-Systeme.- 3.6. Strukturstabile Systeme sind nicht überall dicht.- 4. Störungstheorie.- 4.1. Die Mittelungsmethode.- 4.2. Mittelbildung in monofrequenten Systemen.- 4.3. Mittelbildung in multifrequenten Systemen.- 4.4. Die Mittelbildung in Hamiltonschen Systemen.- 4.5. Adiabatische Invarianten.- 4.6. Mittelbildung in Seifert-Blätterungen.- 5. Normalformen.- 5.1. Formale Reduktion auf eine lineare Normalform.- 5.2. Der Resonanzfall.- 5.3. Poincarésche und Siegelsehe Gebiete..- 5.4. Die Normalform einer Abbildung in einer Umgebung eines Fixpunktes.- 5.5. Die Normalform einer Gleichung mit periodischen Koeffizienten.- 5.6. Die Normalform einer Umgebung einer elliptischen Kurve.- 5.7. Beweis des Satzes von Siegel.- 6. Lokale Bifurkationstheorie.- 6.1. Familien und Deformationen.-6.2. Von Parametern abhängende Matrizen und Singularitäten der Dekrementdia¬gramme.- 6.3. Die Bifurkationen der singulären Punkte eines Vektorfeldes.- 6.4. Verselle Deformationen der Phasenbilder.- 6.5. Der Stabilitätsverlust von Gleichgewichtslagen.- 6.6. Der Stabilitätsverlust von Selbstschwingungen.- 6.7. Verselle Deformationen äquivarianter Vektorfelder auf der Ebene.- 6.8. Die Änderung der Topologie bei Resonanzen.- 6.9. Die Klassifizierung der singulären Punkte.- Beispiele für Prüfungsaufgaben.- Literatur.- Namen- und Sachverzeichnis.
1. Spezielle Gleichungen.- 1.1. Differentialgleichungen, die bezüglich Symmetriegruppen invariant bleiben.- 1.2. Die Auflösung der Singularitäten von Differentialgleichungen.- 1.3. Implizite Differentialgleichungen.- 1.4. Die Normalform einer impliziten Differentialgleichung in der Umgebung eines regulären singulären Punktes.- 1.5. Die zeitfreie Schrödinger-Gleichung.- 1.6. Die Geometrie einer Differentialgleichung zweiter Ordnung und die Geometrie eines Paares von Richtungsfeldern im dreidimensionalen Raum.- 2. Partielle Differentialgleichungen erster Ordnung.- 2.1. Lineare und quasilineare partielle Differentialgleichungen erster Ordnung.- 2.2. Nichtlineare partielle Gleichungen erster Ordnung.- 2.3. Der Satz von Frobenius.- 3. Strukturstabilität.- 3.1. Der Begriff der Strukturstabilität.- 3.2. Differentialgleichungen auf dem Torus.- 3.3. Die analytische Reduktion analytischer Diffeomorphismen der Kreislinie auf Drehungen.- 3.4. Einführung in die hyperbolische Theorie.- 3.5. Anosov-Systeme.- 3.6. Strukturstabile Systeme sind nicht überall dicht.- 4. Störungstheorie.- 4.1. Die Mittelungsmethode.- 4.2. Mittelbildung in monofrequenten Systemen.- 4.3. Mittelbildung in multifrequenten Systemen.- 4.4. Die Mittelbildung in Hamiltonschen Systemen.- 4.5. Adiabatische Invarianten.- 4.6. Mittelbildung in Seifert-Blätterungen.- 5. Normalformen.- 5.1. Formale Reduktion auf eine lineare Normalform.- 5.2. Der Resonanzfall.- 5.3. Poincarésche und Siegelsehe Gebiete..- 5.4. Die Normalform einer Abbildung in einer Umgebung eines Fixpunktes.- 5.5. Die Normalform einer Gleichung mit periodischen Koeffizienten.- 5.6. Die Normalform einer Umgebung einer elliptischen Kurve.- 5.7. Beweis des Satzes von Siegel.- 6. Lokale Bifurkationstheorie.- 6.1. Familien und Deformationen.-6.2. Von Parametern abhängende Matrizen und Singularitäten der Dekrementdia¬gramme.- 6.3. Die Bifurkationen der singulären Punkte eines Vektorfeldes.- 6.4. Verselle Deformationen der Phasenbilder.- 6.5. Der Stabilitätsverlust von Gleichgewichtslagen.- 6.6. Der Stabilitätsverlust von Selbstschwingungen.- 6.7. Verselle Deformationen äquivarianter Vektorfelder auf der Ebene.- 6.8. Die Änderung der Topologie bei Resonanzen.- 6.9. Die Klassifizierung der singulären Punkte.- Beispiele für Prüfungsaufgaben.- Literatur.- Namen- und Sachverzeichnis.