Glück, Logik und Bluff
Welche Gewinnaussichten bietet ein Spiel? Und wie sollte man am besten spielen? Die beiden Fragen führen je nach Typ eines Spiels zu ganz unterschiedlichen mathematischen Mechanismen: Die Wahrscheinlichkeitsrechnung erlaubt es, zufällige Einflüsse in Glücksspielen zu kalkulieren, um so die Gewinnchancen der Spieler abzuschätzen. Wie ein Schachcomputer funktioniert und welchen Grenzen die zugrundeliegenden Algorithmen unterworfen sind, davon handelt die Theorie der kombinatorischen Spiele. Ganz andere Optimierungsansätze, nämlich solche aus der mathematischen Spieltheorie, sind gefragt, wenn Kartenspieler ihre Entscheidungen in Unkenntnis der Karten ihrer Mitspieler treffen müssen. Die drei genannten Theorien werden anhand konkreter (Bei-)Spiele erörtert, darunter Roulette, Lotto, Monopoly, Risiko, Black Jack, das Leiterspiel, Schach, Mühle, Go-Moku, Nim, Backgammon, Go, Mastermind, Memory, Pokern und Baccarat. Trotz der populären Darstellung, die mathematisches Interesse aber kaum Vorkenntnisse voraussetzt, sind die Methoden so konkret beschrieben, dass eine entsprechende Programmierung oder eine Übertragung auf andere Fälle möglich ist. In der 6. Auflage wurden Erläuterungen zu Zwischenschritten bei der Berechnung von Black Jack sowie neuere spieltheoretische Resultate über Mastermind ergänzt.
Der Inhalt Glücksspiele - Kombinatorische Spiele - Strategische Spiele Die Zielgruppe - Mathematisch vorgebildete Leser, die Interesse an Spielen haben - Mathematiklehrer - Studierende und Dozenten der Mathematik Der Autor Dr. Jörg Bewersdorff, Dipl. Mathematiker, ist seit mehreren Jahren Geschäftsführer der Firma MEGA-Spielgeräte in Limburg.
Welche Gewinnaussichten bietet ein Spiel? Und wie sollte man am besten spielen? Die beiden Fragen führen je nach Typ eines Spiels zu ganz unterschiedlichen mathematischen Mechanismen: Die Wahrscheinlichkeitsrechnung erlaubt es, zufällige Einflüsse in Glücksspielen zu kalkulieren, um so die Gewinnchancen der Spieler abzuschätzen. Wie ein Schachcomputer funktioniert und welchen Grenzen die zugrundeliegenden Algorithmen unterworfen sind, davon handelt die Theorie der kombinatorischen Spiele. Ganz andere Optimierungsansätze, nämlich solche aus der mathematischen Spieltheorie, sind gefragt, wenn Kartenspieler ihre Entscheidungen in Unkenntnis der Karten ihrer Mitspieler treffen müssen. Die drei genannten Theorien werden anhand konkreter (Bei-)Spiele erörtert, darunter Roulette, Lotto, Monopoly, Risiko, Black Jack, das Leiterspiel, Schach, Mühle, Go-Moku, Nim, Backgammon, Go, Mastermind, Memory, Pokern und Baccarat. Trotz der populären Darstellung, die mathematisches Interesse aber kaum Vorkenntnisse voraussetzt, sind die Methoden so konkret beschrieben, dass eine entsprechende Programmierung oder eine Übertragung auf andere Fälle möglich ist. In der 6. Auflage wurden Erläuterungen zu Zwischenschritten bei der Berechnung von Black Jack sowie neuere spieltheoretische Resultate über Mastermind ergänzt.
Der Inhalt Glücksspiele - Kombinatorische Spiele - Strategische Spiele Die Zielgruppe - Mathematisch vorgebildete Leser, die Interesse an Spielen haben - Mathematiklehrer - Studierende und Dozenten der Mathematik Der Autor Dr. Jörg Bewersdorff, Dipl. Mathematiker, ist seit mehreren Jahren Geschäftsführer der Firma MEGA-Spielgeräte in Limburg.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.