Grammatical Inference: Algorithms and Applications (eBook, PDF)
7th International Colloquium, ICGI 2004, Athens, Greece, October 11-13, 2004. Proceedings
Redaktion: Paliouras, Georgios; Sakakibara, Yasubumi
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Grammatical Inference: Algorithms and Applications (eBook, PDF)
7th International Colloquium, ICGI 2004, Athens, Greece, October 11-13, 2004. Proceedings
Redaktion: Paliouras, Georgios; Sakakibara, Yasubumi
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 3.38MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 296
- Erscheinungstermin: 11. Januar 2005
- Englisch
- ISBN-13: 9783540301950
- Artikelnr.: 53150384
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Georgios Paliouras, National Center of Scientific Research, Attiki, Greece / Yasubumi Sakakibara, Keio University, Yokohama, Japan
Invited Papers.- Learning and Mathematics.- Learning Finite-State Models for Machine Translation.- The Omphalos Context-Free Grammar Learning Competition.- Regular Papers.- Mutually Compatible and Incompatible Merges for the Search of the Smallest Consistent DFA.- Faster Gradient Descent Training of Hidden Markov Models, Using Individual Learning Rate Adaptation.- Learning Mild Context-Sensitiveness: Toward Understanding Children's Language Learning.- Learnability of Pregroup Grammars.- A Markovian Approach to the Induction of Regular String Distributions.- Learning Node Selecting Tree Transducer from Completely Annotated Examples.- Identifying Clusters from Positive Data.- Introducing Domain and Typing Bias in Automata Inference.- Analogical Equations in Sequences: Definition and Resolution.- Representing Languages by Learnable Rewriting Systems.- A Divide-and-Conquer Approach to Acquire Syntactic Categories.- Grammatical Inference Using Suffix Trees.- Learning Stochastic Finite Automata.- Navigation Pattern Discovery Using Grammatical Inference.- A Corpus-Driven Context-Free Approximation of Head-Driven Phrase Structure Grammar.- Partial Learning Using Link Grammars Data.- eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search.- The Boisdale Algorithm - An Induction Method for a Subclass of Unification Grammar from Positive Data.- Learning Stochastic Deterministic Regular Languages.- Polynomial Time Identification of Strict Deterministic Restricted One-Counter Automata in Some Class from Positive Data.- Poster Papers.- Learning Syntax from Function Words.- Running FCRPNI in Efficient Time for Piecewise and Right Piecewise Testable Languages.- Extracting Minimum Length Document Type Definitions Is NP-Hard.- Learning DistinguishableLinear Grammars from Positive Data.- Extending Incremental Learning of Context Free Grammars in Synapse.- Identifying Left-Right Deterministic Linear Languages.- Efficient Learning of k-Reversible Context-Free Grammars from Positive Structural Examples.- An Analysis of Examples and a Search Space for PAC Learning of Simple Deterministic Languages with Membership Queries.
Invited Papers.- Learning and Mathematics.- Learning Finite-State Models for Machine Translation.- The Omphalos Context-Free Grammar Learning Competition.- Regular Papers.- Mutually Compatible and Incompatible Merges for the Search of the Smallest Consistent DFA.- Faster Gradient Descent Training of Hidden Markov Models, Using Individual Learning Rate Adaptation.- Learning Mild Context-Sensitiveness: Toward Understanding Children's Language Learning.- Learnability of Pregroup Grammars.- A Markovian Approach to the Induction of Regular String Distributions.- Learning Node Selecting Tree Transducer from Completely Annotated Examples.- Identifying Clusters from Positive Data.- Introducing Domain and Typing Bias in Automata Inference.- Analogical Equations in Sequences: Definition and Resolution.- Representing Languages by Learnable Rewriting Systems.- A Divide-and-Conquer Approach to Acquire Syntactic Categories.- Grammatical Inference Using Suffix Trees.- Learning Stochastic Finite Automata.- Navigation Pattern Discovery Using Grammatical Inference.- A Corpus-Driven Context-Free Approximation of Head-Driven Phrase Structure Grammar.- Partial Learning Using Link Grammars Data.- eg-GRIDS: Context-Free Grammatical Inference from Positive Examples Using Genetic Search.- The Boisdale Algorithm - An Induction Method for a Subclass of Unification Grammar from Positive Data.- Learning Stochastic Deterministic Regular Languages.- Polynomial Time Identification of Strict Deterministic Restricted One-Counter Automata in Some Class from Positive Data.- Poster Papers.- Learning Syntax from Function Words.- Running FCRPNI in Efficient Time for Piecewise and Right Piecewise Testable Languages.- Extracting Minimum Length Document Type Definitions Is NP-Hard.- Learning DistinguishableLinear Grammars from Positive Data.- Extending Incremental Learning of Context Free Grammars in Synapse.- Identifying Left-Right Deterministic Linear Languages.- Efficient Learning of k-Reversible Context-Free Grammars from Positive Structural Examples.- An Analysis of Examples and a Search Space for PAC Learning of Simple Deterministic Languages with Membership Queries.