142,99 €
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
142,99 €
142,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
142,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Graphene Field-Effect Transistors
In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices
Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the…mehr

Produktbeschreibung
Graphene Field-Effect Transistors

In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices

Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications.

Graphene Field-Effect Transistors includes information on:

  • Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization
  • Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors
  • Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors
  • Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors
  • Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste


Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.

Autorenporträt
Omar Azzaroni is Adjunct Professor of Physical Chemistry at the Universidad Nacional de La Plata, Argentina. After his PhD in chemistry 2004, he carried out postdoctoral studies at the University of Cambridge, UK, and the Max Planck Institute for Polymer Research, Germany. He is currently a fellow of the Argentinian National Scientific and Technical Research Council (CONICET) and head of the Soft Matter Laboratory at the Universidad Nacional de La Plata. His research interests include nanostructured hybrid interfaces, supra- and macromolecular materials science and soft nanotechnology.   Wolfgang Knoll is scientific managing director of the Austrian Institute of Technology. Previously, he was one of the Directors at the MPI for Polymer Research in Mainz, Germany. A biophysicist by training, he spent time at the IBM Almaden Research Center in California before his habilitation at the Technical University of Munich in 1986. From 1991 to 1999, he was Head of Laboratory for Exotic Nanomaterials hosted by the Institute of Physical and Chemical Research (RIKEN) in Wako, Japan. Since 2010 he is a Regular Member of the Austrian Academy of Sciences, received in 2011 an Honorary Doctorate from the University of Twente, the Netherlands, and became a Member of the Academia Europaea in 2017. He published more than 1000 papers with more than 50000 citations. His current research interests include structure-property relationships of polymeric and other organic systems in thin films and at functionalized surfaces.