Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Graphene Materials: Fundamentals and Emerging Applications brings together innovative methodologies with research and development strategies to provide a detailed state-of-the-art overview of the processing, properties, and technology developments of graphene materials and their wide-ranging applications. The applications areas covered are biosensing, energy storage, environmental monitoring, and health. The book discusses the various methods that have been developed for the preparation and functionalization of single-layered graphene nanosheets. These form the essential building blocks for…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 7.21MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 424
- Erscheinungstermin: 20. April 2015
- Englisch
- ISBN-13: 9781119131823
- Artikelnr.: 42925847
- Verlag: John Wiley & Sons
- Seitenzahl: 424
- Erscheinungstermin: 20. April 2015
- Englisch
- ISBN-13: 9781119131823
- Artikelnr.: 42925847
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Foreword by Rosita Yakimova xix
Part 1: Fundamentals of Graphene and Graphene-Based Nanocomposites 1
1 Graphene and Related Two-Dimensional Materials 3
Manas Mandal, Anirban Maitra, Tanya Das and Chapal Kumar Das
1.1 Introduction 4
1.2 Preparation of Graphene Oxide by Modified Hummer's Method 6
1.3 Dispersion of Graphene Oxide in Organic Solvents 6
1.4 Paper-like Graphene Oxide 7
1.5 Thin Films of Graphene Oxide and Graphene 7
1.6 Nanocomposites of Graphene Oxide 8
1.7 Graphene-Based Materials 9
1.8 Graphene-like 2D Materials 10
1.8.1 Tungsten Sulfide 10
1.8.2 Molybdenum Sulfide 14
1.8.3 Tin Sulfide 15
1.8.4 Tin Selenide 17
1.8.5 Manganese Dioxide 17
1.8.6 Nickel Oxide 18
1.8.7 Boron Nitride 19
1.9 Conclusion 20
References 20
2 Surface Functionalization of Graphene 25
Mojtaba Bagherzadeh and Anahita Farahbakhsh
2.1 Introduction 25
2.2 Noncovalent Functionalization of Graphene 27
2.3 Covalent Functionalization of Graphene 34
2.3.1 Nucleophilic Substitution Reaction 34
2.3.2 Electrophilic Substitution Reaction 41
2.3.3 Condensation Reaction 42
2.3.4 Addition Reaction 50
2.4 Graphene-Nanoparticles 51
2.4.1 Metals NPs: Au, Pd, Pt, Ag 54
2.4.2 Metal oxide NPs: ZnO, SnO2, TiO2, SiO2,RuO2, Mn3O4, Co3O4, and Fe3O4
54
2.4.3 Semiconducting NPs: CdSe, CdS, ZnS, CdTe and Graphene QD 56
2.5 Conclusion 58
References 58
3 Architecture and Applications of Functional Th ree-dimensional Graphene
Networks 67
Ramendra Sundar Dey and Qijin Chi
3.1 Introduction 68
3.1.1 Synthesis of 3D Porous Graphene-Based Materials 69
3.1.2 Overview of 3DG Structures 73
3.2 Applications 77
3.2.1 Supercapacitor 77
3.2.2 Fuel Cells 91
3.2.3 Sensors 92
3.2.4 Other Applications 93
3.3 Summary, Conclusion, Outlook 93
Abbreviations 94
References 94
4 Covalent Graphene-Polymer Nanocomposites 101
Horacio J. Salavagione
4.1 Introduction 101
4.2 Properties of Graphene for Polymer Reinforcement 102
4.3 Graphene and Graphene-like Materials 103
4.4 Methods of Production 104
4.5 Chemistry of Graphene 108
4.6 Conventional Graphene Based Polymer Nanocomposites 109
4.7 Covalent Graphene-polymer Nanocomposites 112
4.8 Grafting-From Approaches 114
4.8.1 Living Radical Polymerizations 115
4.8.2 Other Approaches 123
4.9 Grafting-to Approaches 126
4.9.1 Graphene Oxide-based Chemistry 127
4.9.2 Crosslinking Reactions 130
4.9.3 Click Chemistry 131
4.9.4 Other Grafting-to Approaches 137
4.10 Conclusions 140
References 141
Part 2: Emerging Applications of Graphene in Energy, Health, Environment
and Sensors 151
5 Magnesium Matrix Composites Reinforced with Graphene Nanoplatelets 153
Muhammad Rashad, Fusheng Pan and Muhammad Asif
5.1 Introduction 154
5.1.1 Magnesium 154
5.1.2 Metal Matrix Composites 154
5.1.3 Graphene Nanoplatelets (GNPs) 155
5.2 Effect of Graphene Nanoplatelets on Mechanical Properties of Pure
Magnesium 156
5.2.1 Introduction 156
5.2.2 Synthesis 157
5.2.3 Microstructural Characterization 157
5.2.4 Crystallographic Texture Measurements 158
5.2.5 Mechanical Characterization 160
5.2.6 Conclusions 163
5.3 Synergetic Effect of Graphene Nanoplatelets (GNPs) and Multi-walled
Carbon Nanotube (MW-CNTs) on Mechanical Properties of Pure Magnesium 164
5.3.1 Introduction 164
5.3.2 Synthesis 165
5.3.3 Microstructure Characterization 166
5.3.4 Mechanical Characterization 169
5.3.5 Conclusions 174
5.4 Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and
Ductility of Magnesium-Titanium Alloys 175
5.4.1 Introduction 175
5.4.2 Synthesis 176
5.4.3 Microstructure Characterization 176
5.4.4 Mechanical Characterization 178
5.4.5 Conclusions 179
5.5 Effect of Graphene Nanoplatelets on Tensile Properties of Mg-1%Al-1%Sn
Alloy 180
5.5.1 Introduction 180
5.5.2 Synthesis 180
5.5.3 Microstructure Characterization 180
5.5.4 Mechanical Characterization 181
5.5.5 Conclusions 184
Acknowledgments 184
References 185
6 Graphene and Its Derivatives for Energy Storage 191
Malgorzata Aleksandrzak and Ewa Mijowska
6.1 Introduction 191
6.2 Graphene in Lithium Batteries 192
6.2.1 Lithium Ion Batteries 193
6.2.2 Lithium-Oxygen Batteries 201
6.2.3 Lithium-Sulfur Batteries 206
6.3 Graphene in Supercapacitors 212
6.4 Summary 218
References 218
7 Graphene-Polypyrrole Nanocomposite: An Ideal Electroactive Material for
High Performance Supercapacitors 225
Alagiri Mani, Khosro Zangene Kamali, Alagarsamy Pandikumar, Lim Yee Seng,
Lim Hong Ngee and Huang Nay Ming
7.1 Introduction 226
7.2 Renewable Energy Sources 226
7.3 Importance of Energy Storage 227
7.4 Supercapacitors 228
7.5 Principle and Operation of Supercapacitiors 228
7.6 Electrode Materials for Supercapacitors 230
7.7 Graphene-based Supercapacitors and Th eir Limitations 231
7.8 Graphene-Polymer-Composite-based Supercapacitors 232
7.9 Graphene-Polypyrrole Nanocomposite-based Supercapacitiors 233
7.10 Fabrication of Graphene-Polypyrrole Nanocomposite for Supercapacitiors
233
7.11 Performance of Graphene-Polypyrrole Nanocomposite-based
Supercapacitors 239
7.12 Summary and Outlooks 240
References 243
8 Hydrophobic ZnO Anchored Graphene Nanocomposite Based Bulk Hetro-junction
Solar Cells to Improve Short Circuit Current Density 245
Rajni Sharma, Firoz Alam, A.K. Sharma, V. Dutta and S.K. Dhawan
8.1 Introduction 246
8.2 Economic Expectations of OPV 248
8.3 Device Architecture 253
8.3.1 Bulk-heterojunction Structure 252
8.4 Operational Principles 253
8.4.1 Series and Shunt Resistance 255
8.4.2 Standard Test Conditions 256
8.5 Experimental procedure for synthesis of hydrophobic nanomaterials 258
8.5.1 Zinc Oxide Nanoparticles 258
8.5.2 ZnO Nanoparticle Decorated Graphene (Z@G) Nanocomposite 259
8.6 Characterization of Synthesized ZnO Nanoparticles and ZnO Decorated
Graphene (Z@G) Nanocomposite 259
8.6.1 Structural Analysis 259
8.6.2 Morphological Analysis 260
8.6.3 Optical Analysis 262
8.6.4 FTIR (Fourier Transform Infrared) Spectroscopy 263
8.6.5 Raman Spectroscopy 265
8.6.6 Hydrophobicity Measurement 266
8.7 Hybrid Solar Cell Fabrication and Characterization 267
8.7.1 Device Fabrication 267
8.7.2 J-V (Current density-Voltage) Characteristics 267
8.8. Conclusion 272
Acknowledgement 273
References 273
9 Three-dimensional Graphene Bimetallic Nanocatalysts Foam for Energy
Storage and Biosensing 277
Chih-Chien Kung, Liming Dai, Xiong Yu and Chung-Chiun Liu
9.1 Background and Introduction 278
9.1.1 Biosensors 278
9.1.2 Fuel Cells 280
9.1.3 Bimetallic Nanocatalysts 282
9.1.4 Carbon Supported Materials 282
9.1.5 Rotating Disk Electrode 284
9.1.6 Cyclic Voltammetry and Chronoamperometric Techniques 286
9.1.7 Methods of Estimating Limit of Detection (LOD) 288
9.1.8 CO Stripping for the Estimation of the Catalyst Surface Area 288
9.1.9 Brunauer, Emmett and Teller (BET) Measurement 288
9.1.10 Motivations of the Study 289
9.2 Preparation and Characterization of Three Dimensional Graphene Foam
Supported Platinum-Ruthenium Bimetallic Nanocatalysts for Hydrogen Peroxide
Based Electrochemical Biosensors 290
9.2.1 Introduction 290
9.2.2 Experimental 291
9.2.3 Results and Discussion 294
9.2.4 Conclusion for H2O2 Detection in Biosensing 307
9.3 Three dimensional graphene Foam Supported Platinum-Ruthenium Bimetallic
Nanocatalysts for Direct Methanol and Direct Ethanol Fuel Cell Applications
307
9.3.1 Introduction 308
9.3.2 Experimental 309
9.3.3 Results and Discussion 311
9.3.4 Conclusion for Methanol and Ethanol Oxidation Reactions in Energy
Storage 319
9.4 Conclusions 319
Acknowledgments 320
References 320
10 Electrochemical Sensing and Biosensing Platforms Using Graphene and
Graphene-based Nanocomposites 325
Sandeep Kumar Vashist and John H.T. Luong
10.1 Introduction 326
10.2 Fabrication of Graphene and Its Derivatives 328
10.2.1 Exfoliation 328
10.2.2 Chemical Vapor Deposition (CVD) 330
10.2.3 Miscellaneous Techniques 331
10.3 Properties of Graphene and Its Derivatives 332
10.4 Electrochemistry of Graphene 333
10.5 Graphene and Graphene-Based Nanocomposites as Electrode Materials 335
10.6 Electrochemical Sensing/Biosensing 336
10.6.1 Glucose 336
10.6.2 DNA/Proteins/Cells 341
10.6.3 Other Small Electroactive Analytes 344
10.7 Challenges and Future Trends 347
References 351
11 Applications of Graphene Electrodes in Health and Environmental
Monitoring 361
Georgia-Paraskevi Nikoleli, Susana Campuzano, José M. Pingarrón and
Dimitrios P. Nikolelis
11.1 Biosensors Based on Nanostructured Materials 362
11.2 Graphene Nanomaterials Used in Electrochemical (bio) Sensors
Fabrication 363
11.3 Miniaturized Graphene Nanostructured Biosensors for Health Monitoring
365
11.3.1 Graphene in Bio-field-eff ect Transistors 365
11.3.2 Graphene Impedimetric Biosensors 367
11.3.3 Graphene in Electrochemical Biosensors 368
11.4 Miniaturized Graphene Nanostructured Biosensors for Environmental
Monitoring 377
11.4.1 Detection of Toxic Gases in Air 377
11.4.2 Detection of Heavy Metal Ions 379
11.4.3 Detection of Organic Pollutants 381
11.5 Conclusions and Future Prospects 384
Acknowledgements 386
References 386
Index 393
Foreword by Rosita Yakimova xix
Part 1: Fundamentals of Graphene and Graphene-Based Nanocomposites 1
1 Graphene and Related Two-Dimensional Materials 3
Manas Mandal, Anirban Maitra, Tanya Das and Chapal Kumar Das
1.1 Introduction 4
1.2 Preparation of Graphene Oxide by Modified Hummer's Method 6
1.3 Dispersion of Graphene Oxide in Organic Solvents 6
1.4 Paper-like Graphene Oxide 7
1.5 Thin Films of Graphene Oxide and Graphene 7
1.6 Nanocomposites of Graphene Oxide 8
1.7 Graphene-Based Materials 9
1.8 Graphene-like 2D Materials 10
1.8.1 Tungsten Sulfide 10
1.8.2 Molybdenum Sulfide 14
1.8.3 Tin Sulfide 15
1.8.4 Tin Selenide 17
1.8.5 Manganese Dioxide 17
1.8.6 Nickel Oxide 18
1.8.7 Boron Nitride 19
1.9 Conclusion 20
References 20
2 Surface Functionalization of Graphene 25
Mojtaba Bagherzadeh and Anahita Farahbakhsh
2.1 Introduction 25
2.2 Noncovalent Functionalization of Graphene 27
2.3 Covalent Functionalization of Graphene 34
2.3.1 Nucleophilic Substitution Reaction 34
2.3.2 Electrophilic Substitution Reaction 41
2.3.3 Condensation Reaction 42
2.3.4 Addition Reaction 50
2.4 Graphene-Nanoparticles 51
2.4.1 Metals NPs: Au, Pd, Pt, Ag 54
2.4.2 Metal oxide NPs: ZnO, SnO2, TiO2, SiO2,RuO2, Mn3O4, Co3O4, and Fe3O4
54
2.4.3 Semiconducting NPs: CdSe, CdS, ZnS, CdTe and Graphene QD 56
2.5 Conclusion 58
References 58
3 Architecture and Applications of Functional Th ree-dimensional Graphene
Networks 67
Ramendra Sundar Dey and Qijin Chi
3.1 Introduction 68
3.1.1 Synthesis of 3D Porous Graphene-Based Materials 69
3.1.2 Overview of 3DG Structures 73
3.2 Applications 77
3.2.1 Supercapacitor 77
3.2.2 Fuel Cells 91
3.2.3 Sensors 92
3.2.4 Other Applications 93
3.3 Summary, Conclusion, Outlook 93
Abbreviations 94
References 94
4 Covalent Graphene-Polymer Nanocomposites 101
Horacio J. Salavagione
4.1 Introduction 101
4.2 Properties of Graphene for Polymer Reinforcement 102
4.3 Graphene and Graphene-like Materials 103
4.4 Methods of Production 104
4.5 Chemistry of Graphene 108
4.6 Conventional Graphene Based Polymer Nanocomposites 109
4.7 Covalent Graphene-polymer Nanocomposites 112
4.8 Grafting-From Approaches 114
4.8.1 Living Radical Polymerizations 115
4.8.2 Other Approaches 123
4.9 Grafting-to Approaches 126
4.9.1 Graphene Oxide-based Chemistry 127
4.9.2 Crosslinking Reactions 130
4.9.3 Click Chemistry 131
4.9.4 Other Grafting-to Approaches 137
4.10 Conclusions 140
References 141
Part 2: Emerging Applications of Graphene in Energy, Health, Environment
and Sensors 151
5 Magnesium Matrix Composites Reinforced with Graphene Nanoplatelets 153
Muhammad Rashad, Fusheng Pan and Muhammad Asif
5.1 Introduction 154
5.1.1 Magnesium 154
5.1.2 Metal Matrix Composites 154
5.1.3 Graphene Nanoplatelets (GNPs) 155
5.2 Effect of Graphene Nanoplatelets on Mechanical Properties of Pure
Magnesium 156
5.2.1 Introduction 156
5.2.2 Synthesis 157
5.2.3 Microstructural Characterization 157
5.2.4 Crystallographic Texture Measurements 158
5.2.5 Mechanical Characterization 160
5.2.6 Conclusions 163
5.3 Synergetic Effect of Graphene Nanoplatelets (GNPs) and Multi-walled
Carbon Nanotube (MW-CNTs) on Mechanical Properties of Pure Magnesium 164
5.3.1 Introduction 164
5.3.2 Synthesis 165
5.3.3 Microstructure Characterization 166
5.3.4 Mechanical Characterization 169
5.3.5 Conclusions 174
5.4 Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and
Ductility of Magnesium-Titanium Alloys 175
5.4.1 Introduction 175
5.4.2 Synthesis 176
5.4.3 Microstructure Characterization 176
5.4.4 Mechanical Characterization 178
5.4.5 Conclusions 179
5.5 Effect of Graphene Nanoplatelets on Tensile Properties of Mg-1%Al-1%Sn
Alloy 180
5.5.1 Introduction 180
5.5.2 Synthesis 180
5.5.3 Microstructure Characterization 180
5.5.4 Mechanical Characterization 181
5.5.5 Conclusions 184
Acknowledgments 184
References 185
6 Graphene and Its Derivatives for Energy Storage 191
Malgorzata Aleksandrzak and Ewa Mijowska
6.1 Introduction 191
6.2 Graphene in Lithium Batteries 192
6.2.1 Lithium Ion Batteries 193
6.2.2 Lithium-Oxygen Batteries 201
6.2.3 Lithium-Sulfur Batteries 206
6.3 Graphene in Supercapacitors 212
6.4 Summary 218
References 218
7 Graphene-Polypyrrole Nanocomposite: An Ideal Electroactive Material for
High Performance Supercapacitors 225
Alagiri Mani, Khosro Zangene Kamali, Alagarsamy Pandikumar, Lim Yee Seng,
Lim Hong Ngee and Huang Nay Ming
7.1 Introduction 226
7.2 Renewable Energy Sources 226
7.3 Importance of Energy Storage 227
7.4 Supercapacitors 228
7.5 Principle and Operation of Supercapacitiors 228
7.6 Electrode Materials for Supercapacitors 230
7.7 Graphene-based Supercapacitors and Th eir Limitations 231
7.8 Graphene-Polymer-Composite-based Supercapacitors 232
7.9 Graphene-Polypyrrole Nanocomposite-based Supercapacitiors 233
7.10 Fabrication of Graphene-Polypyrrole Nanocomposite for Supercapacitiors
233
7.11 Performance of Graphene-Polypyrrole Nanocomposite-based
Supercapacitors 239
7.12 Summary and Outlooks 240
References 243
8 Hydrophobic ZnO Anchored Graphene Nanocomposite Based Bulk Hetro-junction
Solar Cells to Improve Short Circuit Current Density 245
Rajni Sharma, Firoz Alam, A.K. Sharma, V. Dutta and S.K. Dhawan
8.1 Introduction 246
8.2 Economic Expectations of OPV 248
8.3 Device Architecture 253
8.3.1 Bulk-heterojunction Structure 252
8.4 Operational Principles 253
8.4.1 Series and Shunt Resistance 255
8.4.2 Standard Test Conditions 256
8.5 Experimental procedure for synthesis of hydrophobic nanomaterials 258
8.5.1 Zinc Oxide Nanoparticles 258
8.5.2 ZnO Nanoparticle Decorated Graphene (Z@G) Nanocomposite 259
8.6 Characterization of Synthesized ZnO Nanoparticles and ZnO Decorated
Graphene (Z@G) Nanocomposite 259
8.6.1 Structural Analysis 259
8.6.2 Morphological Analysis 260
8.6.3 Optical Analysis 262
8.6.4 FTIR (Fourier Transform Infrared) Spectroscopy 263
8.6.5 Raman Spectroscopy 265
8.6.6 Hydrophobicity Measurement 266
8.7 Hybrid Solar Cell Fabrication and Characterization 267
8.7.1 Device Fabrication 267
8.7.2 J-V (Current density-Voltage) Characteristics 267
8.8. Conclusion 272
Acknowledgement 273
References 273
9 Three-dimensional Graphene Bimetallic Nanocatalysts Foam for Energy
Storage and Biosensing 277
Chih-Chien Kung, Liming Dai, Xiong Yu and Chung-Chiun Liu
9.1 Background and Introduction 278
9.1.1 Biosensors 278
9.1.2 Fuel Cells 280
9.1.3 Bimetallic Nanocatalysts 282
9.1.4 Carbon Supported Materials 282
9.1.5 Rotating Disk Electrode 284
9.1.6 Cyclic Voltammetry and Chronoamperometric Techniques 286
9.1.7 Methods of Estimating Limit of Detection (LOD) 288
9.1.8 CO Stripping for the Estimation of the Catalyst Surface Area 288
9.1.9 Brunauer, Emmett and Teller (BET) Measurement 288
9.1.10 Motivations of the Study 289
9.2 Preparation and Characterization of Three Dimensional Graphene Foam
Supported Platinum-Ruthenium Bimetallic Nanocatalysts for Hydrogen Peroxide
Based Electrochemical Biosensors 290
9.2.1 Introduction 290
9.2.2 Experimental 291
9.2.3 Results and Discussion 294
9.2.4 Conclusion for H2O2 Detection in Biosensing 307
9.3 Three dimensional graphene Foam Supported Platinum-Ruthenium Bimetallic
Nanocatalysts for Direct Methanol and Direct Ethanol Fuel Cell Applications
307
9.3.1 Introduction 308
9.3.2 Experimental 309
9.3.3 Results and Discussion 311
9.3.4 Conclusion for Methanol and Ethanol Oxidation Reactions in Energy
Storage 319
9.4 Conclusions 319
Acknowledgments 320
References 320
10 Electrochemical Sensing and Biosensing Platforms Using Graphene and
Graphene-based Nanocomposites 325
Sandeep Kumar Vashist and John H.T. Luong
10.1 Introduction 326
10.2 Fabrication of Graphene and Its Derivatives 328
10.2.1 Exfoliation 328
10.2.2 Chemical Vapor Deposition (CVD) 330
10.2.3 Miscellaneous Techniques 331
10.3 Properties of Graphene and Its Derivatives 332
10.4 Electrochemistry of Graphene 333
10.5 Graphene and Graphene-Based Nanocomposites as Electrode Materials 335
10.6 Electrochemical Sensing/Biosensing 336
10.6.1 Glucose 336
10.6.2 DNA/Proteins/Cells 341
10.6.3 Other Small Electroactive Analytes 344
10.7 Challenges and Future Trends 347
References 351
11 Applications of Graphene Electrodes in Health and Environmental
Monitoring 361
Georgia-Paraskevi Nikoleli, Susana Campuzano, José M. Pingarrón and
Dimitrios P. Nikolelis
11.1 Biosensors Based on Nanostructured Materials 362
11.2 Graphene Nanomaterials Used in Electrochemical (bio) Sensors
Fabrication 363
11.3 Miniaturized Graphene Nanostructured Biosensors for Health Monitoring
365
11.3.1 Graphene in Bio-field-eff ect Transistors 365
11.3.2 Graphene Impedimetric Biosensors 367
11.3.3 Graphene in Electrochemical Biosensors 368
11.4 Miniaturized Graphene Nanostructured Biosensors for Environmental
Monitoring 377
11.4.1 Detection of Toxic Gases in Air 377
11.4.2 Detection of Heavy Metal Ions 379
11.4.3 Detection of Organic Pollutants 381
11.5 Conclusions and Future Prospects 384
Acknowledgements 386
References 386
Index 393