Thomas M. Søndergaard
Green's Function Integral Equation Methods in Nano-Optics (eBook, PDF)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Thomas M. Søndergaard
Green's Function Integral Equation Methods in Nano-Optics (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This gives an introduction to using Green's function integral equation methods (GFIEMs) for solving scattering problems in nano-optics. The book covers types of integral equation methods for 1D, 2D, and 3D scattering problems in nano-optics, how the integral equations can be discretized and solved numerically, and how this can be done efficiently.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 19.59MB
Andere Kunden interessierten sich auch für
- Thomas M. SøndergaardGreen's Function Integral Equation Methods in Nano-Optics (eBook, ePUB)48,95 €
- Photonics, Plasmonics and Information Optics (eBook, PDF)62,95 €
- Levon G. PetrosianAnalysis of Structures on Elastic Foundation (eBook, PDF)183,95 €
- Optical Nano and Micro Actuator Technology (eBook, PDF)203,95 €
- F. J. DuarteQuantum Optics for Engineers (eBook, PDF)131,95 €
- Araz YacoubianOptics Essentials (eBook, PDF)61,95 €
- Guided Wave Optics and Photonic Devices (eBook, PDF)81,95 €
-
-
-
This gives an introduction to using Green's function integral equation methods (GFIEMs) for solving scattering problems in nano-optics. The book covers types of integral equation methods for 1D, 2D, and 3D scattering problems in nano-optics, how the integral equations can be discretized and solved numerically, and how this can be done efficiently.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 430
- Erscheinungstermin: 30. Januar 2019
- Englisch
- ISBN-13: 9781351260190
- Artikelnr.: 55120823
- Verlag: Taylor & Francis
- Seitenzahl: 430
- Erscheinungstermin: 30. Januar 2019
- Englisch
- ISBN-13: 9781351260190
- Artikelnr.: 55120823
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Thomas Søndergaard is currently an Associate Professor in Nano Optics, Aalborg University, Denmark. His areas of expertise include numerical methods for theoretical analysis of electromagnetic fields in micro- and nanostructures. Plasmonics: waveguiding, optical antennas, resonators and sensors based on a type of electromagnetic surface wave at metal-dielectric interfaces known as Surface Plasmon Polaritons. Photonic crystals: wavelength-scale periodic structures in which light with certain wavelengths cannot propagate, similar to electrons with certain energies not being able to progagate in semiconductors, and how this can be exploited for e.g. designing optical waveguides and cavities. Green's function integral equation methods. Dr. Sondergaard has been awarded The Danish Independent Research Councils' Young Researcher's Award (2006) and The Danish Optical Society Award (2008). He is a board member of the Danish Optical Society and reviewer of 15-20 papers per year for such journals as Physical Review B, Physical Review Letters, Applied Physics Letters, Optics Express, IEEE Journal of Quantum Electronics, IEEE Journal of Lightwave Technology, Optics Communications, Physica status solidi (b), Nature Photonics, Optics Letters, and Journal of the Optical Society of America A/B. Dr. Sondergaard has also been published 84 papers in peerreviewed journals and holds three patents.
Introduction. Theoretical Foundation. One-dimensional Scattering Problems.
Surface Integral Equation Method for 2D Scattering Problems. Area Integral
Equation Method for 2D Scattering Problems. Volume Integral Equation Method
for 3D Scattering Problems. Volume Integral Equation Method for
Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D
scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate
Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm.
Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder
and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides.
References.
Surface Integral Equation Method for 2D Scattering Problems. Area Integral
Equation Method for 2D Scattering Problems. Volume Integral Equation Method
for 3D Scattering Problems. Volume Integral Equation Method for
Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D
scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate
Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm.
Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder
and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides.
References.
Introduction. Theoretical Foundation. One-dimensional Scattering Problems. Surface Integral Equation Method for 2D Scattering Problems. Area Integral Equation Method for 2D Scattering Problems. Volume Integral Equation Method for 3D Scattering Problems. Volume Integral Equation Method for Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm. Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides. References.
Introduction. Theoretical Foundation. One-dimensional Scattering Problems.
Surface Integral Equation Method for 2D Scattering Problems. Area Integral
Equation Method for 2D Scattering Problems. Volume Integral Equation Method
for 3D Scattering Problems. Volume Integral Equation Method for
Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D
scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate
Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm.
Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder
and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides.
References.
Surface Integral Equation Method for 2D Scattering Problems. Area Integral
Equation Method for 2D Scattering Problems. Volume Integral Equation Method
for 3D Scattering Problems. Volume Integral Equation Method for
Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D
scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate
Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm.
Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder
and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides.
References.
Introduction. Theoretical Foundation. One-dimensional Scattering Problems. Surface Integral Equation Method for 2D Scattering Problems. Area Integral Equation Method for 2D Scattering Problems. Volume Integral Equation Method for 3D Scattering Problems. Volume Integral Equation Method for Cylindrically Symmetric Structures. Surface Integral Equation Method for 3D scattering Problems. Chapter A: Residue Theorem. Chapter B: Conjugate Gradient Algorithm. Chapter C: Generalized Minimum Residual Algorithm. Chapter D: Bessel Functions. Chapter E: Analytic Scattering from a Cylinder and a Sphere. Chapter F: Calculating Guided Modes of Planar Waveguides. References.