Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, Alain Valette
Groups with the Haagerup Property (eBook, PDF)
Gromov's a-T-menability
57,95 €
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
57,95 €
Als Download kaufen
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
29 °P sammeln
Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, Alain Valette
Groups with the Haagerup Property (eBook, PDF)
Gromov's a-T-menability
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. This book is to covers various aspects of the Haagerup property. It gives several new examples.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.52MB
A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. This book is to covers various aspects of the Haagerup property. It gives several new examples.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Birkhäuser Basel
- Seitenzahl: 126
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783034882378
- Artikelnr.: 53162346
- Verlag: Birkhäuser Basel
- Seitenzahl: 126
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783034882378
- Artikelnr.: 53162346
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Introduction.- 1.1 Basic definitions.- 1.1.1 The Haagerup property, or a-T-menability.- 1.1.2 Kazhdan's property (T).- 1.2 Examples.- 1.2.1 Compact groups.- 1.2.2 SO(n, 1) and SU(n, 1).- 1.2.3 Groups acting properly on trees.- 1.2.4 Groups acting properly on R-trees.- 1.2.5 Coxeter groups.- 1.2.6 Amenable groups.- 1.2.7 Groups acting on spaces with walls.- 1.3 What is the Haagerup property good for?.- 1.3.1 Harmonic analysis: weak amenability.- 1.3.2 K-amenability.- 1.3.3 The Baum-Connes conjecture.- 1.4 What this book is about.- 2 Dynamical Characterizations.- 2.1 Definitions and statements of results.- 2.2 Actions on measure spaces.- 2.3 Actions on factors.- 3 Simple Lie Groups of Rank One.- 3.1 The Busemann cocycle and the Gromov scalar product.- 3.2 Construction of a quadratic form.- 3.3 Positivity.- 3.4 The link with complementary series.- 4 Classification of Lie Groups with the Haagerup Property.- 4.0 Introduction.- 4.1 Step one.- 4.1.1 The fine structure of Lie groups.- 4.1.2A criterion for relative property (T).- 4.1.3 Conclusion of step one.- 4.2 Step two.- 4.2.1 The generalized Haagerup property.- 4.2.2 Amenable groups.- 4.2.3 Simple Lie groups.- 4.2.4 A covering group.- 4.2.5 Spherical functions.- 4.2.6 The group SU(n,1).- 4.2.7 The groups SO(n, 1) and SU(n,1).- 4.2.8 Conclusion of step two.- 5 The Radial Haagerup Property.- 5.0 Introduction.- 5.1 The geometry of harmonic NA groups.- 5.2 Harmonic analysis on H-type groups.- 5.3 Analysis on harmonic NA groups.- 5.4 Positive definite spherical functions.- 5.5 Appendix on special functions.- 6 Discrete Groups.- 6.1 Some hereditary results.- 6.2 Groups acting on trees.- 6.3 Group presentations.- 6.4 Appendix: Completely positive mapson amalgamated products, by Paul Jolissaint.- 7 Open Questions and Partial Results.- 7.1 Obstructions to the Haagerup property.- 7.2 Classes of groups.- 7.2.1 One-relator groups.- 7.2.2 Three-manifold groups.- 7.2.3 Braid groups.- 7.3 Group constructions.- 7.3.1 Semi-direct products.- 7.3.2 Actions on trees.- 7.3.3 Central extensions.- 7.4 Geometric characterizations.- 7.4.1 Chasles' relation.- 7.4.2 Some cute and sexy spaces.- 7.5 Other dynamical characterizations.- 7.5.1 Actions on infinite measure spaces.- 7.5.2 Invariant probability measures.
1 Introduction.- 1.1 Basic definitions.- 1.1.1 The Haagerup property, or a-T-menability.- 1.1.2 Kazhdan's property (T).- 1.2 Examples.- 1.2.1 Compact groups.- 1.2.2 SO(n, 1) and SU(n, 1).- 1.2.3 Groups acting properly on trees.- 1.2.4 Groups acting properly on R-trees.- 1.2.5 Coxeter groups.- 1.2.6 Amenable groups.- 1.2.7 Groups acting on spaces with walls.- 1.3 What is the Haagerup property good for?.- 1.3.1 Harmonic analysis: weak amenability.- 1.3.2 K-amenability.- 1.3.3 The Baum-Connes conjecture.- 1.4 What this book is about.- 2 Dynamical Characterizations.- 2.1 Definitions and statements of results.- 2.2 Actions on measure spaces.- 2.3 Actions on factors.- 3 Simple Lie Groups of Rank One.- 3.1 The Busemann cocycle and the Gromov scalar product.- 3.2 Construction of a quadratic form.- 3.3 Positivity.- 3.4 The link with complementary series.- 4 Classification of Lie Groups with the Haagerup Property.- 4.0 Introduction.- 4.1 Step one.- 4.1.1 The fine structure of Lie groups.- 4.1.2A criterion for relative property (T).- 4.1.3 Conclusion of step one.- 4.2 Step two.- 4.2.1 The generalized Haagerup property.- 4.2.2 Amenable groups.- 4.2.3 Simple Lie groups.- 4.2.4 A covering group.- 4.2.5 Spherical functions.- 4.2.6 The group SU(n,1).- 4.2.7 The groups SO(n, 1) and SU(n,1).- 4.2.8 Conclusion of step two.- 5 The Radial Haagerup Property.- 5.0 Introduction.- 5.1 The geometry of harmonic NA groups.- 5.2 Harmonic analysis on H-type groups.- 5.3 Analysis on harmonic NA groups.- 5.4 Positive definite spherical functions.- 5.5 Appendix on special functions.- 6 Discrete Groups.- 6.1 Some hereditary results.- 6.2 Groups acting on trees.- 6.3 Group presentations.- 6.4 Appendix: Completely positive mapson amalgamated products, by Paul Jolissaint.- 7 Open Questions and Partial Results.- 7.1 Obstructions to the Haagerup property.- 7.2 Classes of groups.- 7.2.1 One-relator groups.- 7.2.2 Three-manifold groups.- 7.2.3 Braid groups.- 7.3 Group constructions.- 7.3.1 Semi-direct products.- 7.3.2 Actions on trees.- 7.3.3 Central extensions.- 7.4 Geometric characterizations.- 7.4.1 Chasles' relation.- 7.4.2 Some cute and sexy spaces.- 7.5 Other dynamical characterizations.- 7.5.1 Actions on infinite measure spaces.- 7.5.2 Invariant probability measures.