In diesem Buch finden Sie die Grundlagen der Funktionalanalysis, die im ersten Drittel des 20. Jahrhunderts entwickelt wurden.
Ausgehend von konkreten Fragen der Analysis lernen Sie Methoden zur Untersuchung linearer Operatoren zwischen Hilberträumen und Banachräumen kennen und wenden diese auf Fourier-Reihen, lineare Integral- und Differentialgleichungen und in der Quantenmechanik an.
Das Buch eignet sich hervorragend als Begleitlektüre zu einer einführenden Vorlesung über Funktionalanalysis und auch zum Selbststudium.
Es ist sehr ausführlich und leicht verständlich geschrieben, die Konzepte und Resultate werden durch zahlreiche Beispiele und Abbildungen illustriert. Anhand vieler Übungsaufgaben können Sie Ihr Verständnis des Stoffes testen, anhand anderer diesen selbstständig weiterentwickeln. Lösungen finden Sie auf der Webseite zum Buch zum Buch unter www.springer.de.
An Vorkenntnissen benötigen Sie nur "Analysis I", Grundlagen der Linearen Algebra und der Topologie metrischer Räume sowie Vertrautheit mit Lebesgue-Integralen. Bei Bedarf können Sie viele dieser Vorkenntnisse mittels des ausführlichen Anhangs auffrischen.
Für die vorliegende zweite Auflage wurde das Werk vollständig durchgesehen, um einige Themen erweitert und in der didaktischen Darstellung weiter verbessert, insbesondere durch detailliertere Ausarbeitungen vieler Argumente.
Der Autor
Winfried Kaballo lehrt als Professor an der Fakultät für Mathematik der TU Dortmund mit Schwerpunkt Analysis, insbesondere Funktionalanalysis.
Ausgehend von konkreten Fragen der Analysis lernen Sie Methoden zur Untersuchung linearer Operatoren zwischen Hilberträumen und Banachräumen kennen und wenden diese auf Fourier-Reihen, lineare Integral- und Differentialgleichungen und in der Quantenmechanik an.
Das Buch eignet sich hervorragend als Begleitlektüre zu einer einführenden Vorlesung über Funktionalanalysis und auch zum Selbststudium.
Es ist sehr ausführlich und leicht verständlich geschrieben, die Konzepte und Resultate werden durch zahlreiche Beispiele und Abbildungen illustriert. Anhand vieler Übungsaufgaben können Sie Ihr Verständnis des Stoffes testen, anhand anderer diesen selbstständig weiterentwickeln. Lösungen finden Sie auf der Webseite zum Buch zum Buch unter www.springer.de.
An Vorkenntnissen benötigen Sie nur "Analysis I", Grundlagen der Linearen Algebra und der Topologie metrischer Räume sowie Vertrautheit mit Lebesgue-Integralen. Bei Bedarf können Sie viele dieser Vorkenntnisse mittels des ausführlichen Anhangs auffrischen.
Für die vorliegende zweite Auflage wurde das Werk vollständig durchgesehen, um einige Themen erweitert und in der didaktischen Darstellung weiter verbessert, insbesondere durch detailliertere Ausarbeitungen vieler Argumente.
Der Autor
Winfried Kaballo lehrt als Professor an der Fakultät für Mathematik der TU Dortmund mit Schwerpunkt Analysis, insbesondere Funktionalanalysis.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.