13,99 €
inkl. MwSt.
Sofort per Download lieferbar
  • Format: PDF

Studienarbeit aus dem Jahr 2017 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1,3, AKAD University, ehem. AKAD Fachhochschule Stuttgart, Veranstaltung: Systemdesign, Sprache: Deutsch, Abstract: Die Mathematik lehrt uns seit Beginn zu klaren und am besten eineindeutigen Ergebnisse zu gelangen. Ähnlich verhält es sich mit mathematischen Zuordnungen und Mengen. Ein Element ist Teil einer Menge oder eben nicht. So einfach ist der Mensch jedoch nicht gestrickt. Das Wetter ist nicht gut aber auch nicht schlecht – es ist wechselhaft. Das Badewasser ist nicht heiß aber auch nicht kalt – es…mehr

Produktbeschreibung
Studienarbeit aus dem Jahr 2017 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1,3, AKAD University, ehem. AKAD Fachhochschule Stuttgart, Veranstaltung: Systemdesign, Sprache: Deutsch, Abstract: Die Mathematik lehrt uns seit Beginn zu klaren und am besten eineindeutigen Ergebnisse zu gelangen. Ähnlich verhält es sich mit mathematischen Zuordnungen und Mengen. Ein Element ist Teil einer Menge oder eben nicht. So einfach ist der Mensch jedoch nicht gestrickt. Das Wetter ist nicht gut aber auch nicht schlecht – es ist wechselhaft. Das Badewasser ist nicht heiß aber auch nicht kalt – es ist lauwarm, aber eher ein bisschen zu warm als zu kalt. Wenn ein Mensch also die Badewassertemperatur regeln soll, wird er kaum mit einem Thermometer eine genaue Temperatur festlegen und versuchen diese zu halten, sondern er wird von grob geschätzten Werten ausgehen – Ziel ist es, eine angenehme Badetemperatur zu erhalten, unabhängig der tatsächlichen Wassertemperatur. Doch wie lassen sich Beschreibungen wie „angenehm“, „zu warm“, „zu kalt“ etc. in ein Regelsystem implementieren? Hierzu wird die klassische, mathematische Menge um sogenannte Fuzzy-Mengen erweitert. „Fuzzy“ bedeutet in diesem Sinne „unscharf“, es handelt sich dabei um Mengen, die nicht mehr scharf abgegrenzt werden können und die über linguistische Variablen und Terme wie z.B. „zu warm“, „zu kalt“, „angenehm“ etc. beschrieben werden. Fuzzy-Mengen bilden menschliche Alltagserfahrungen und Begriffe wieder, welche sich mit Hilfe von Fuzzy-Controllern in regelungstechnische Systeme implementieren lassen. Im Rahmen dieser Arbeit werden zunächst die Grundlagen von Fuzzy-Controllern erläutert, mit der Zielsetzung, ein grundlegendes Verständnis für die Funktionsweise von Fuzzy-Controllern zu vermitteln. Im Anschluss daran werden die theoretisch erläuterten Grundlagen anhand eines Anwendungsbeispiels angewandt. Ziel der exemplarischen Berechnung ist die Transformation der theoretischen Erläuterungen in praxisnahe Anwendungen zu erreichen. Abschließend erfolgt eine kurze Diskussion über Vor- und Nachteile von Fuzzy-Controllern im Vergleich zu klassischen Regelsystemen ohne Fuzzy-Logik.