Nato dai corsi universitari di Teoria dei Gruppi tenuti per vari anni dall'autore, questo libro affronta gli argomenti fondamentali della teoria: gruppi abeliani, nilpotenti e risolubili, gruppi liberi, permutazioni, rappresentazioni e coomologia. Dopo le prime nozioni, viene esposto il programma di Hölder per la classificazione dei gruppi finiti. Un lungo capitolo è dedicato all'azione di un gruppo su un insieme e alle permutazioni, sia sotto l'aspetto algebrico che combinatorio, con richiami alla teoria delle equazioni. Si considerano anche alcune questioni di carattere logico, come la decidibilità del problema della parola per certe classi di gruppi. Un aspetto essenziale del libro è la presenza di una grande varietà di esercizi, circa 400, in gran parte risolti.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.