Topics and features:
- Explains the fundamental concepts behind training linear classifiers and feature learning
- Discusses the wide range of loss functions for training binary and multi-class classifiers
- Illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks
- Presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks
- Describes two real-world examples of the detection and classification of traffic signs using deep learning methods
- Examines a range of varied techniques for visualizing neural networks, using a Python interface
- Provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website
This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.