Guide to Load Analysis for Durability in Vehicle Engineering (eBook, PDF)
Redaktion: Johannesson, P.; Speckert, M.
Alle Infos zum eBook verschenken
Guide to Load Analysis for Durability in Vehicle Engineering (eBook, PDF)
Redaktion: Johannesson, P.; Speckert, M.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The overall goal of vehicle design is to make a robust and reliable product that meets the demands of the customers and this book treats the topic of analysing and describing customer loads with respect to durability. Guide to Load Analysis for Vehicle and Durability Engineering supplies a variety of methods for load analysis and also explains their proper use in view of the vehicle design process. In Part I, Overview, there are two chapters presenting the scope of the book as well as providing an introduction to the subject. Part II, Methods for Load Analysis, describes useful methods and…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 15.51MB
- Ahmed ElmarakbiAdvanced Composite Materials for Automotive Applications (eBook, PDF)105,99 €
- Jaroslaw Sobieszczanski-SobieskiMultidisciplinary Design Optimization Supported by Knowledge Based Engineering (eBook, PDF)98,99 €
- Vladimir KobelevDesign and Analysis of Composite Structures for Automotive Applications (eBook, PDF)117,99 €
- Ahmed ElmarakbiAdvanced Composite Materials for Automotive Applications (eBook, ePUB)105,99 €
- Piet M. LugtGrease Lubrication in Rolling Bearings (eBook, PDF)123,99 €
- Guide to Load Analysis for Durability in Vehicle Engineering (eBook, ePUB)109,99 €
- Daniel AlazardReverse Engineering in Control Design (eBook, PDF)139,99 €
-
-
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 456
- Erscheinungstermin: 27. August 2013
- Englisch
- ISBN-13: 9781118700495
- Artikelnr.: 39477773
- Verlag: John Wiley & Sons
- Seitenzahl: 456
- Erscheinungstermin: 27. August 2013
- Englisch
- ISBN-13: 9781118700495
- Artikelnr.: 39477773
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
207 6.3 Statistical Approach to Estimate Load Severity 209 6.3.1 The Extrapolation Method 210 6.3.2 Fitting Range-pairs Distribution 210 6.3.3 Semi-parametric Approach 213 6.4 The Monte Carlo Method 215 6.5 Expected Damage for Gaussian Loads 218 6.5.1 Stationary Gaussian Loads 219 6.5.2 Non-stationary Gaussian Loads with Constant Mean
223 6.6 Non-Gaussian Loads: the Role of Upcrossing Intensity 224 6.6.1 Bendat's Narrow Band Approximation 224 6.6.2 Generalization of Bendat's Approach
225 6.6.3 Laplace Processes 228 6.7 The Coefficient of Variation for Damage 230 6.7.1 Splitting the Measured Signal into Parts 230 6.7.2 Short Signals 231 6.7.3 Gaussian Loads 232 6.7.4 Compound Poisson Processes: Roads with Pot Holes 233 6.8 Markov Loads 235 6.8.1 Markov Chains
240 6.8.2 Discrete Markov Loads - Definition 242 6.8.3 Markov Chains of Turning Points 243 6.8.4 Switching Markov Chain Loads 244 6.8.5 Approximation of Expected Damage for Gaussian Loads 247 6.8.6 Intensity of Interval Upcrossings for Markov Loads
248 6.9 Summary 249 7 Load Variation and Reliability 253 7.1 Modelling of Variability in Loads 253 7.1.1 The Sources of Load Variability: Statistical Populations 254 7.1.2 Controlled or Uncontrolled Variation 255 7.1.3 Model Errors 255 7.2 Reliability Assessment 256 7.2.1 The Statistical Model Complexity 256 7.2.2 The Physical Model Complexity 257 7.3 The Full Probabilistic Model 258 7.3.1 Monte Carlo Simulations 259 7.3.2 Accuracy of the Full Probabilistic Approach 263 7.4 The First-Moment Method 263 7.5 The Second-Moment Method 264 7.5.1 The Gauss Approximation Formula 264 7.6 The Fatigue Load-Strength Model 265 7.6.1 The Fatigue Load and Strength Variables 265 7.6.2 Reliability Indices 266 7.6.3 The Equivalent Load and Strength Variables 267 7.6.4 Determining Uncertainty Measures 271 7.6.5 The Uncertainty due to the Estimated Damage Exponent 273 7.6.6 The Uncertainty Measure of Strength 275 7.6.7 The Uncertainty Measure of Load 277 7.6.8 Use of the Reliability Index 279 7.6.9 Including an Extra Safety Factor 281 7.6.10 Reducing Uncertainties 283 7.7 Summary 284 Part III LOAD ANALYSIS IN VIEW OF THE VEHICLE DESIGN PROCESS 8 Evaluation of Customer Loads 287 8.1 Introduction 287 8.2 Survey Sampling 288 8.2.1 Why Use Random Samples? 288 8.2.2 Simple Random Sample 289 8.2.3 Stratified Random Sample 290 8.2.4 Cluster Sample 290 8.2.5 Sampling with Unequal Probabilities 291 8.2.6 An Application 292 8.2.7 Simple Random Sampling in More Detail 293 8.2.8 Conclusion 294 8.3 Load Measurement Uncertainty 295 8.3.1 Precision in Load Severity 295 8.3.2 Pair-wise Analysis of Load Severity 301 8.3.3 Joint Analysis of Load Severity 301 8.4 Random Sampling of Customers 303 8.4.1 Customer Survey 303 8.4.2 Characterization of a Market 304 8.4.3 Simplified Model for a New Market 306 8.4.4 Comparison of Markets 308 8.5 Customer Usage and Load Environment 308 8.5.1 Model for Customer Usage 310 8.5.2 Load Environment Uncertainty 312 8.6 Vehicle-Independent Load Descriptions 314 8.7 Discussion and Summary 318 9 Derivation of Design Loads 321 9.1 Introduction 321 9.1.1 Scalar Load Representations 321 9.1.2 Other Load Representations 322 9.1.3 Statistical Aspects 322 9.1.4 Structure of the Chapter 323 9.2 From Customer Usage Profiles to Design Targets 324 9.2.1 Customer Load Distribution and Design Load 324 9.2.2 Strength Distribution and Strength Requirement 324 9.2.3 Defining the Reliability Target 326 9.2.4 Partial Safety Factor for Load-Strength Modelling 328 9.2.5 Safety Factors for Design Loads 329 9.2.6 Summary and Remarks 331 9.3 Synthetic Load Models 333 9.4 Random Load Descriptions 335 9.4.1 Models for External Load Environment 335 9.4.2 Load Descriptions in Design 336 9.4.3 Load Description for Testing 336 9.5 Applying Reconstruction Methods 336 9.5.1 Rainflow Reconstruction 336 9.5.2 1D and Markov Reconstruction 339 9.5.3 Spectral Reconstruction 339 9.5.4 Multi-input Loads 340 9.6 Standardized Load Spectra 341 9.7 Proving Ground Loads 342 9.8 Optimized Combination of Test Track Events 342 9.8.1 Optimizing with Respect to Damage per Channel 343 9.8.2 An Instructive Example 346 9.8.3 Extensions
351 9.8.4 Hints and Practical Aspects 353 9.9 Discussion and Summary 354 10 Verification of Systems and Components 357 10.1 Introduction 357 10.1.1 Principles of Verification 357 10.1.2 Test for Continuous Improvements vs. Tests for Release 358 10.1.3 Specific Problems in Verification of Durability 359 10.1.4 Characterizing or Verification Tests 360 10.1.5 Verification on Different Levels 361 10.1.6 Physical vs. Numerical Evaluation 363 10.1.7 Summary 363 10.2 Generating Loads for Testing 363 10.2.1 Reliability Targets and Verification Loads 364 10.2.2 Generation of Time Signals based on Load Specifications 364 10.2.3 Acceleration of Tests 365 10.3 Planning and Evaluation of Tests 365 10.3.1 Choice of Strength Distribution and Variance 366 10.3.2 Parameter Estimation and Censored Data 368 10.3.3 Verification of Safety Factors 371 10.3.4 Statistical Tests for Quantiles 373 10.4 Discussion and Summary 379 A Fatigue Models and Life Prediction 383 A.1 Short, Long or Infinite Life 383 A.1.1 Low Cycle Fatigue 383 A.1.2 High Cycle Fatigue 383 A.1.3 Fatigue Limit 384 A.2 Cumulative Fatigue 384 A.2.1 Arguments for the Palmgren-Miner Rule 384 A.2.2 When is the Palmgren-Miner Rule Useful? 386 B Statistics and Probability 387 B.1 Further Reading 387 B.2 Some Common Distributions 387 B.2.1 Normal Distribution 387 B.2.2 Log-Normal Distribution 388 B.2.3 Weibull Distribution 388 B.2.4 Rayleigh Distribution 388 B.2.5 Exponential Distribution 388 B.2.6 Generalized Pareto Distribution 388 B.3 Extreme Value Distributions 389 B.3.1 Peak over Threshold Analysis 389 C Fourier Analysis 391 C.1 Fourier Transformation 391 C.2 Fourier Series 392 C.3 Sampling and the Nyquist-Shannon Theorem 393 C.4 DFT/FFT (Discrete Fourier Transformation) 394 D Finite Element Analysis 395 D.1 Kinematics of Flexible Bodies 395 D.2 Equations of Equilibrium 396 D.3 Linear Elastic Material Behaviour 397 D.4 Some Basics on Discretization Methods 397 D.5 Dynamic Equations 399 E Multibody System Simulation 401 E.1 Linear Models 401 E.2 Mathematical Description of Multibody Systems 402 E.2.1 The Equations of Motion 403 E.2.2 Computational Issues 404 F Software for Load Analysis 407 F.1 Some Dedicated Software Packages 407 F.2 Some Software Packages for Fatigue Analysis 408 F.3 WAFO - a Toolbox for Matlab 408 Bibliography 411 Index 423
207 6.3 Statistical Approach to Estimate Load Severity 209 6.3.1 The Extrapolation Method 210 6.3.2 Fitting Range-pairs Distribution 210 6.3.3 Semi-parametric Approach 213 6.4 The Monte Carlo Method 215 6.5 Expected Damage for Gaussian Loads 218 6.5.1 Stationary Gaussian Loads 219 6.5.2 Non-stationary Gaussian Loads with Constant Mean
223 6.6 Non-Gaussian Loads: the Role of Upcrossing Intensity 224 6.6.1 Bendat's Narrow Band Approximation 224 6.6.2 Generalization of Bendat's Approach
225 6.6.3 Laplace Processes 228 6.7 The Coefficient of Variation for Damage 230 6.7.1 Splitting the Measured Signal into Parts 230 6.7.2 Short Signals 231 6.7.3 Gaussian Loads 232 6.7.4 Compound Poisson Processes: Roads with Pot Holes 233 6.8 Markov Loads 235 6.8.1 Markov Chains
240 6.8.2 Discrete Markov Loads - Definition 242 6.8.3 Markov Chains of Turning Points 243 6.8.4 Switching Markov Chain Loads 244 6.8.5 Approximation of Expected Damage for Gaussian Loads 247 6.8.6 Intensity of Interval Upcrossings for Markov Loads
248 6.9 Summary 249 7 Load Variation and Reliability 253 7.1 Modelling of Variability in Loads 253 7.1.1 The Sources of Load Variability: Statistical Populations 254 7.1.2 Controlled or Uncontrolled Variation 255 7.1.3 Model Errors 255 7.2 Reliability Assessment 256 7.2.1 The Statistical Model Complexity 256 7.2.2 The Physical Model Complexity 257 7.3 The Full Probabilistic Model 258 7.3.1 Monte Carlo Simulations 259 7.3.2 Accuracy of the Full Probabilistic Approach 263 7.4 The First-Moment Method 263 7.5 The Second-Moment Method 264 7.5.1 The Gauss Approximation Formula 264 7.6 The Fatigue Load-Strength Model 265 7.6.1 The Fatigue Load and Strength Variables 265 7.6.2 Reliability Indices 266 7.6.3 The Equivalent Load and Strength Variables 267 7.6.4 Determining Uncertainty Measures 271 7.6.5 The Uncertainty due to the Estimated Damage Exponent 273 7.6.6 The Uncertainty Measure of Strength 275 7.6.7 The Uncertainty Measure of Load 277 7.6.8 Use of the Reliability Index 279 7.6.9 Including an Extra Safety Factor 281 7.6.10 Reducing Uncertainties 283 7.7 Summary 284 Part III LOAD ANALYSIS IN VIEW OF THE VEHICLE DESIGN PROCESS 8 Evaluation of Customer Loads 287 8.1 Introduction 287 8.2 Survey Sampling 288 8.2.1 Why Use Random Samples? 288 8.2.2 Simple Random Sample 289 8.2.3 Stratified Random Sample 290 8.2.4 Cluster Sample 290 8.2.5 Sampling with Unequal Probabilities 291 8.2.6 An Application 292 8.2.7 Simple Random Sampling in More Detail 293 8.2.8 Conclusion 294 8.3 Load Measurement Uncertainty 295 8.3.1 Precision in Load Severity 295 8.3.2 Pair-wise Analysis of Load Severity 301 8.3.3 Joint Analysis of Load Severity 301 8.4 Random Sampling of Customers 303 8.4.1 Customer Survey 303 8.4.2 Characterization of a Market 304 8.4.3 Simplified Model for a New Market 306 8.4.4 Comparison of Markets 308 8.5 Customer Usage and Load Environment 308 8.5.1 Model for Customer Usage 310 8.5.2 Load Environment Uncertainty 312 8.6 Vehicle-Independent Load Descriptions 314 8.7 Discussion and Summary 318 9 Derivation of Design Loads 321 9.1 Introduction 321 9.1.1 Scalar Load Representations 321 9.1.2 Other Load Representations 322 9.1.3 Statistical Aspects 322 9.1.4 Structure of the Chapter 323 9.2 From Customer Usage Profiles to Design Targets 324 9.2.1 Customer Load Distribution and Design Load 324 9.2.2 Strength Distribution and Strength Requirement 324 9.2.3 Defining the Reliability Target 326 9.2.4 Partial Safety Factor for Load-Strength Modelling 328 9.2.5 Safety Factors for Design Loads 329 9.2.6 Summary and Remarks 331 9.3 Synthetic Load Models 333 9.4 Random Load Descriptions 335 9.4.1 Models for External Load Environment 335 9.4.2 Load Descriptions in Design 336 9.4.3 Load Description for Testing 336 9.5 Applying Reconstruction Methods 336 9.5.1 Rainflow Reconstruction 336 9.5.2 1D and Markov Reconstruction 339 9.5.3 Spectral Reconstruction 339 9.5.4 Multi-input Loads 340 9.6 Standardized Load Spectra 341 9.7 Proving Ground Loads 342 9.8 Optimized Combination of Test Track Events 342 9.8.1 Optimizing with Respect to Damage per Channel 343 9.8.2 An Instructive Example 346 9.8.3 Extensions
351 9.8.4 Hints and Practical Aspects 353 9.9 Discussion and Summary 354 10 Verification of Systems and Components 357 10.1 Introduction 357 10.1.1 Principles of Verification 357 10.1.2 Test for Continuous Improvements vs. Tests for Release 358 10.1.3 Specific Problems in Verification of Durability 359 10.1.4 Characterizing or Verification Tests 360 10.1.5 Verification on Different Levels 361 10.1.6 Physical vs. Numerical Evaluation 363 10.1.7 Summary 363 10.2 Generating Loads for Testing 363 10.2.1 Reliability Targets and Verification Loads 364 10.2.2 Generation of Time Signals based on Load Specifications 364 10.2.3 Acceleration of Tests 365 10.3 Planning and Evaluation of Tests 365 10.3.1 Choice of Strength Distribution and Variance 366 10.3.2 Parameter Estimation and Censored Data 368 10.3.3 Verification of Safety Factors 371 10.3.4 Statistical Tests for Quantiles 373 10.4 Discussion and Summary 379 A Fatigue Models and Life Prediction 383 A.1 Short, Long or Infinite Life 383 A.1.1 Low Cycle Fatigue 383 A.1.2 High Cycle Fatigue 383 A.1.3 Fatigue Limit 384 A.2 Cumulative Fatigue 384 A.2.1 Arguments for the Palmgren-Miner Rule 384 A.2.2 When is the Palmgren-Miner Rule Useful? 386 B Statistics and Probability 387 B.1 Further Reading 387 B.2 Some Common Distributions 387 B.2.1 Normal Distribution 387 B.2.2 Log-Normal Distribution 388 B.2.3 Weibull Distribution 388 B.2.4 Rayleigh Distribution 388 B.2.5 Exponential Distribution 388 B.2.6 Generalized Pareto Distribution 388 B.3 Extreme Value Distributions 389 B.3.1 Peak over Threshold Analysis 389 C Fourier Analysis 391 C.1 Fourier Transformation 391 C.2 Fourier Series 392 C.3 Sampling and the Nyquist-Shannon Theorem 393 C.4 DFT/FFT (Discrete Fourier Transformation) 394 D Finite Element Analysis 395 D.1 Kinematics of Flexible Bodies 395 D.2 Equations of Equilibrium 396 D.3 Linear Elastic Material Behaviour 397 D.4 Some Basics on Discretization Methods 397 D.5 Dynamic Equations 399 E Multibody System Simulation 401 E.1 Linear Models 401 E.2 Mathematical Description of Multibody Systems 402 E.2.1 The Equations of Motion 403 E.2.2 Computational Issues 404 F Software for Load Analysis 407 F.1 Some Dedicated Software Packages 407 F.2 Some Software Packages for Fatigue Analysis 408 F.3 WAFO - a Toolbox for Matlab 408 Bibliography 411 Index 423