Hamiltonian Partial Differential Equations and Applications (eBook, PDF)
53,49 €
inkl. MwSt.
Sofort per Download lieferbar
Hamiltonian Partial Differential Equations and Applications (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves.
The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.63MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Massimiliano BertiAlmost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle (eBook, PDF)48,14 €
- Contributions to Nonlinear Elliptic Equations and Systems (eBook, PDF)96,29 €
- C. Eugene WayneDynamics of Partial Differential Equations (eBook, PDF)42,79 €
- Infinite Dimensional Dynamical Systems (eBook, PDF)96,29 €
- Inna ShingarevaSolving Nonlinear Partial Differential Equations with Maple and Mathematica (eBook, PDF)128,39 €
- Viviane BaladiDynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (eBook, PDF)128,39 €
- Fabrizio ColomboSpectral Theory on the S-Spectrum for Quaternionic Operators (eBook, PDF)96,29 €
-
-
-
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves.
The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
Produktdetails
- Produktdetails
- Verlag: Springer New York / The Fields Institute for Research in Mathematical Sciences
- Erscheinungstermin: 11. September 2015
- Englisch
- ISBN-13: 9781493929504
- Artikelnr.: 43796681
- Verlag: Springer New York / The Fields Institute for Research in Mathematical Sciences
- Erscheinungstermin: 11. September 2015
- Englisch
- ISBN-13: 9781493929504
- Artikelnr.: 43796681
Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation (C. Bardos, N. Besse).- Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem (M. Beck, O. Chaudhary, C.E. Wayne).- Normal Form Transformations for Capillary-Gravity Water Waves (W. Craig, C. Sulem).- On a Fluid-Particle Interaction Model: Global in Time Weak Solutions Within a Moving Domain in R3 (S. Doboszczak, K. Trivisa).- Envelope Equations for Three-Dimensional Gravity and Flexural-Gravity Waves Based on a Hamiltonian Approach (P. Guyenne).- Dissipation of a Narrow-Banded Surface Water Waves (D. Henderson, G.K. Rajan, H. Segur).- The Kelvin–Helmholtz Instabilities in Two-Fluids Shallow Water Models (D. Lannes, M. Ming).- Some Analytic Results on the FPU Paradox (D. Bambusi, A. Carati, A. Maiocchi, A. Maspero).- A Nash–Moser Approach to KAM Theory (M. Berti, P. Bolle).- On the Spectral and Orbital Stability of Spatially Periodic Stationary Solutions of Generalized Korteweg–de Vries Equations (T. Kapitula, B. Deconinck).- Time-Averaging for Weakly Nonlinear CGL Equations with Arbitrary Potentials (G. Huang, S. Kuksin, A. Maiocchi).- Partial Differential Equations with Random Noise in Inflationary Cosmology (R.H. Brandenberger).- Local Isometric Immersions of Pseudo-Spherical Surfaces and Evolution Equations (N. Kahouadji, N. Kamran, K. Tenenblat).- IST Versus PDE, A Comparative Study (C. Klein, J.-C. Saut).
Hamiltonian Structure, Fluid Representation and Stability for the Vlasov-Dirac-Benney Equation (C. Bardos, N. Besse).- Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem (M. Beck, O. Chaudhary, C.E. Wayne).- Normal Form Transformations for Capillary-Gravity Water Waves (W. Craig, C. Sulem).- On a Fluid-Particle Interaction Model: Global in Time Weak Solutions Within a Moving Domain in R3 (S. Doboszczak, K. Trivisa).- Envelope Equations for Three-Dimensional Gravity and Flexural-Gravity Waves Based on a Hamiltonian Approach (P. Guyenne).- Dissipation of a Narrow-Banded Surface Water Waves (D. Henderson, G.K. Rajan, H. Segur).- The Kelvin-Helmholtz Instabilities in Two-Fluids Shallow Water Models (D. Lannes, M. Ming).- Some Analytic Results on the FPU Paradox (D. Bambusi, A. Carati, A. Maiocchi, A. Maspero).- A Nash-Moser Approach to KAM Theory (M. Berti, P. Bolle).- On the Spectral and Orbital Stability of Spatially Periodic Stationary Solutions of Generalized Korteweg-de Vries Equations (T. Kapitula, B. Deconinck).- Time-Averaging for Weakly Nonlinear CGL Equations with Arbitrary Potentials (G. Huang, S. Kuksin, A. Maiocchi).- Partial Differential Equations with Random Noise in Inflationary Cosmology (R.H. Brandenberger).- Local Isometric Immersions of Pseudo-Spherical Surfaces and Evolution Equations (N. Kahouadji, N. Kamran, K. Tenenblat).- IST Versus PDE, A Comparative Study (C. Klein, J.-C. Saut).
Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation (C. Bardos, N. Besse).- Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem (M. Beck, O. Chaudhary, C.E. Wayne).- Normal Form Transformations for Capillary-Gravity Water Waves (W. Craig, C. Sulem).- On a Fluid-Particle Interaction Model: Global in Time Weak Solutions Within a Moving Domain in R3 (S. Doboszczak, K. Trivisa).- Envelope Equations for Three-Dimensional Gravity and Flexural-Gravity Waves Based on a Hamiltonian Approach (P. Guyenne).- Dissipation of a Narrow-Banded Surface Water Waves (D. Henderson, G.K. Rajan, H. Segur).- The Kelvin–Helmholtz Instabilities in Two-Fluids Shallow Water Models (D. Lannes, M. Ming).- Some Analytic Results on the FPU Paradox (D. Bambusi, A. Carati, A. Maiocchi, A. Maspero).- A Nash–Moser Approach to KAM Theory (M. Berti, P. Bolle).- On the Spectral and Orbital Stability of Spatially Periodic Stationary Solutions of Generalized Korteweg–de Vries Equations (T. Kapitula, B. Deconinck).- Time-Averaging for Weakly Nonlinear CGL Equations with Arbitrary Potentials (G. Huang, S. Kuksin, A. Maiocchi).- Partial Differential Equations with Random Noise in Inflationary Cosmology (R.H. Brandenberger).- Local Isometric Immersions of Pseudo-Spherical Surfaces and Evolution Equations (N. Kahouadji, N. Kamran, K. Tenenblat).- IST Versus PDE, A Comparative Study (C. Klein, J.-C. Saut).
Hamiltonian Structure, Fluid Representation and Stability for the Vlasov-Dirac-Benney Equation (C. Bardos, N. Besse).- Analysis of Enhanced Diffusion in Taylor Dispersion via a Model Problem (M. Beck, O. Chaudhary, C.E. Wayne).- Normal Form Transformations for Capillary-Gravity Water Waves (W. Craig, C. Sulem).- On a Fluid-Particle Interaction Model: Global in Time Weak Solutions Within a Moving Domain in R3 (S. Doboszczak, K. Trivisa).- Envelope Equations for Three-Dimensional Gravity and Flexural-Gravity Waves Based on a Hamiltonian Approach (P. Guyenne).- Dissipation of a Narrow-Banded Surface Water Waves (D. Henderson, G.K. Rajan, H. Segur).- The Kelvin-Helmholtz Instabilities in Two-Fluids Shallow Water Models (D. Lannes, M. Ming).- Some Analytic Results on the FPU Paradox (D. Bambusi, A. Carati, A. Maiocchi, A. Maspero).- A Nash-Moser Approach to KAM Theory (M. Berti, P. Bolle).- On the Spectral and Orbital Stability of Spatially Periodic Stationary Solutions of Generalized Korteweg-de Vries Equations (T. Kapitula, B. Deconinck).- Time-Averaging for Weakly Nonlinear CGL Equations with Arbitrary Potentials (G. Huang, S. Kuksin, A. Maiocchi).- Partial Differential Equations with Random Noise in Inflationary Cosmology (R.H. Brandenberger).- Local Isometric Immersions of Pseudo-Spherical Surfaces and Evolution Equations (N. Kahouadji, N. Kamran, K. Tenenblat).- IST Versus PDE, A Comparative Study (C. Klein, J.-C. Saut).