Handbook of Approximate Bayesian Computation (eBook, ePUB)
Redaktion: Sisson, Scott A.; Beaumont, Mark; Fan, Yanan
62,95 €
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
31 °P sammeln
62,95 €
Als Download kaufen
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
31 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
31 °P sammeln
Handbook of Approximate Bayesian Computation (eBook, ePUB)
Redaktion: Sisson, Scott A.; Beaumont, Mark; Fan, Yanan
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 62.02MB
Andere Kunden interessierten sich auch für
- Peter D. CongdonBayesian Hierarchical Models (eBook, ePUB)48,95 €
- Darren J. WilkinsonStochastic Modelling for Systems Biology, Third Edition (eBook, ePUB)50,95 €
- Bayesian Applications in Pharmaceutical Development (eBook, ePUB)48,95 €
- Lyle D. BroemelingBayesian Methods for Repeated Measures (eBook, ePUB)62,95 €
- Ying YuanBayesian Designs for Phase I-II Clinical Trials (eBook, ePUB)42,95 €
- Gary L RosnerBayesian Thinking in Biostatistics (eBook, ePUB)110,95 €
- Case Studies in Bayesian Methods for Biopharmaceutical CMC (eBook, ePUB)52,95 €
-
-
-
The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 678
- Erscheinungstermin: 3. September 2018
- Englisch
- ISBN-13: 9781351643467
- Artikelnr.: 54820181
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 678
- Erscheinungstermin: 3. September 2018
- Englisch
- ISBN-13: 9781351643467
- Artikelnr.: 54820181
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Scott Sission is Professor, ARC Future Fellow and Head of Statistics in the School of Mathematics and Statistics at UNSW. Yanan Fan is a Senior Lecturer at the School of Mathematics and Statistics at UNSW. Mark Beaumont is Professor of Statistics at the University of Bristol.
Introduction
Overview of approximate Bayesian computation: S. A. Sisson, Y. Fan and M.
A. Beaumont
On the history of ABC: S.Tavare
Regression approaches: M. G. B. Blum
Monte Carlo samplers for ABC: Y. Fan and S. A. Sisson
Summary statistics: D. Prangle
Likelihood-free model choose: J.-M. Marin, P. Pudlo, A. Estoup and C.
Robert
ABC and indirect inference: C. C. Drovandi
High-dimensional ABC: D. Nott, V. Ong, Y. Fan and S. A. Sisson Theoretical
and methodological aspects of MCMC computations with noisy likelihoods: C.
Andrieu, A.Lee and M. Viola
Informed Choices: How to calibrate ABC with hypothesis testing: O. Ratmann,
A. Camacho, S. Hu and C. Coljin
Approximating the likelihood in approximate Bayesian computation: C. C.
Drovandi, C. Grazian, K. Mengersen and C. Robert
Software: D.Wegmann
Divide and conquer in ABC: Expectation-Propagation algorithms for
likelihood-free inference: S. Barthelme, N. Chopin and V. Cottet
SMC-ABC methods for estimation of stochastic simulation models of the limit
order book: G.W. Peters, E. Panayi and F. Septier
Inferences on the acquisition of multidrug resistance in Mycobacterium
tuberculosis using molecular epidemiological data: G. S. Rodrigues, S. A.
Sisson, M. M. Tanaka
ABC in Systems Biology: J. Liepe and M. P. H. Stumpf
Application of approximate Bayesian computation to make inference about the
genetic history of Pygmy hunter-gatherers populations from Western Central
Africa: A. Estoup et al
ABC for climate: dealing with expensive simulators: P. B. Holden, N. R.
Edwards, J. Hensman and R. D. Wilkinson
ABC in ecological modelling: M. Fasiolo and S. N. Wood
ABC in Nuclear Imaging: Y. Fan, S. R. Meikle, G. Angelis and A. Sitek
Overview of approximate Bayesian computation: S. A. Sisson, Y. Fan and M.
A. Beaumont
On the history of ABC: S.Tavare
Regression approaches: M. G. B. Blum
Monte Carlo samplers for ABC: Y. Fan and S. A. Sisson
Summary statistics: D. Prangle
Likelihood-free model choose: J.-M. Marin, P. Pudlo, A. Estoup and C.
Robert
ABC and indirect inference: C. C. Drovandi
High-dimensional ABC: D. Nott, V. Ong, Y. Fan and S. A. Sisson Theoretical
and methodological aspects of MCMC computations with noisy likelihoods: C.
Andrieu, A.Lee and M. Viola
Informed Choices: How to calibrate ABC with hypothesis testing: O. Ratmann,
A. Camacho, S. Hu and C. Coljin
Approximating the likelihood in approximate Bayesian computation: C. C.
Drovandi, C. Grazian, K. Mengersen and C. Robert
Software: D.Wegmann
Divide and conquer in ABC: Expectation-Propagation algorithms for
likelihood-free inference: S. Barthelme, N. Chopin and V. Cottet
SMC-ABC methods for estimation of stochastic simulation models of the limit
order book: G.W. Peters, E. Panayi and F. Septier
Inferences on the acquisition of multidrug resistance in Mycobacterium
tuberculosis using molecular epidemiological data: G. S. Rodrigues, S. A.
Sisson, M. M. Tanaka
ABC in Systems Biology: J. Liepe and M. P. H. Stumpf
Application of approximate Bayesian computation to make inference about the
genetic history of Pygmy hunter-gatherers populations from Western Central
Africa: A. Estoup et al
ABC for climate: dealing with expensive simulators: P. B. Holden, N. R.
Edwards, J. Hensman and R. D. Wilkinson
ABC in ecological modelling: M. Fasiolo and S. N. Wood
ABC in Nuclear Imaging: Y. Fan, S. R. Meikle, G. Angelis and A. Sitek
Introduction
Overview of approximate Bayesian computation: S. A. Sisson, Y. Fan and M.
A. Beaumont
On the history of ABC: S.Tavare
Regression approaches: M. G. B. Blum
Monte Carlo samplers for ABC: Y. Fan and S. A. Sisson
Summary statistics: D. Prangle
Likelihood-free model choose: J.-M. Marin, P. Pudlo, A. Estoup and C.
Robert
ABC and indirect inference: C. C. Drovandi
High-dimensional ABC: D. Nott, V. Ong, Y. Fan and S. A. Sisson Theoretical
and methodological aspects of MCMC computations with noisy likelihoods: C.
Andrieu, A.Lee and M. Viola
Informed Choices: How to calibrate ABC with hypothesis testing: O. Ratmann,
A. Camacho, S. Hu and C. Coljin
Approximating the likelihood in approximate Bayesian computation: C. C.
Drovandi, C. Grazian, K. Mengersen and C. Robert
Software: D.Wegmann
Divide and conquer in ABC: Expectation-Propagation algorithms for
likelihood-free inference: S. Barthelme, N. Chopin and V. Cottet
SMC-ABC methods for estimation of stochastic simulation models of the limit
order book: G.W. Peters, E. Panayi and F. Septier
Inferences on the acquisition of multidrug resistance in Mycobacterium
tuberculosis using molecular epidemiological data: G. S. Rodrigues, S. A.
Sisson, M. M. Tanaka
ABC in Systems Biology: J. Liepe and M. P. H. Stumpf
Application of approximate Bayesian computation to make inference about the
genetic history of Pygmy hunter-gatherers populations from Western Central
Africa: A. Estoup et al
ABC for climate: dealing with expensive simulators: P. B. Holden, N. R.
Edwards, J. Hensman and R. D. Wilkinson
ABC in ecological modelling: M. Fasiolo and S. N. Wood
ABC in Nuclear Imaging: Y. Fan, S. R. Meikle, G. Angelis and A. Sitek
Overview of approximate Bayesian computation: S. A. Sisson, Y. Fan and M.
A. Beaumont
On the history of ABC: S.Tavare
Regression approaches: M. G. B. Blum
Monte Carlo samplers for ABC: Y. Fan and S. A. Sisson
Summary statistics: D. Prangle
Likelihood-free model choose: J.-M. Marin, P. Pudlo, A. Estoup and C.
Robert
ABC and indirect inference: C. C. Drovandi
High-dimensional ABC: D. Nott, V. Ong, Y. Fan and S. A. Sisson Theoretical
and methodological aspects of MCMC computations with noisy likelihoods: C.
Andrieu, A.Lee and M. Viola
Informed Choices: How to calibrate ABC with hypothesis testing: O. Ratmann,
A. Camacho, S. Hu and C. Coljin
Approximating the likelihood in approximate Bayesian computation: C. C.
Drovandi, C. Grazian, K. Mengersen and C. Robert
Software: D.Wegmann
Divide and conquer in ABC: Expectation-Propagation algorithms for
likelihood-free inference: S. Barthelme, N. Chopin and V. Cottet
SMC-ABC methods for estimation of stochastic simulation models of the limit
order book: G.W. Peters, E. Panayi and F. Septier
Inferences on the acquisition of multidrug resistance in Mycobacterium
tuberculosis using molecular epidemiological data: G. S. Rodrigues, S. A.
Sisson, M. M. Tanaka
ABC in Systems Biology: J. Liepe and M. P. H. Stumpf
Application of approximate Bayesian computation to make inference about the
genetic history of Pygmy hunter-gatherers populations from Western Central
Africa: A. Estoup et al
ABC for climate: dealing with expensive simulators: P. B. Holden, N. R.
Edwards, J. Hensman and R. D. Wilkinson
ABC in ecological modelling: M. Fasiolo and S. N. Wood
ABC in Nuclear Imaging: Y. Fan, S. R. Meikle, G. Angelis and A. Sitek