Handbook of Composites from Renewable Materials, Volume 7, Nanocomposites (eBook, ePUB)
Science and Fundamentals
Redaktion: Thakur, Vijay Kumar; Kessler, Michael R.; Thakur, Manju Kumari
Alle Infos zum eBook verschenken
Handbook of Composites from Renewable Materials, Volume 7, Nanocomposites (eBook, ePUB)
Science and Fundamentals
Redaktion: Thakur, Vijay Kumar; Kessler, Michael R.; Thakur, Manju Kumari
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry. The Handbook of Composites from Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 40.14MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Jossey-Bass
- Seitenzahl: 736
- Erscheinungstermin: 5. April 2017
- Englisch
- ISBN-13: 9781119224464
- Artikelnr.: 52554063
- Verlag: Jossey-Bass
- Seitenzahl: 736
- Erscheinungstermin: 5. April 2017
- Englisch
- ISBN-13: 9781119224464
- Artikelnr.: 52554063
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
F with Super-Heated Steam 342 10.2.3.1 SHS Treatment 342 10.2.3.2 Characterization Methods of sB
F 342 10.2.3.3 Changes in Surface Morphology of SHS-Treated Bamboo 344 10.2.3.4 Changes in Chemical and Physical Properties of SHS-Treated Bamboo 345 10.2.3.5 Classification of sB
F 348 10.2.4 Preparation of sB
F/Plastic Microcomposites 349 10.2.4.1 Mechanical and Physical Properties of sB
F/Plastic Microcomposites 349 10.2.4.2 Melt Processability of sB
F/Plastic Microcomposites 350 10.2.4.3 Electrical Properties of sB
F/Plastic Microcomposites 350 10.3 Bamboo Lignocellulosic Nanofiber and Nanocomposite 352 10.3.1 Nanofibrillation Technologies of Cellulose 352 10.3.2 Nanofibrillation Technologies of Lignocellulose 352 10.3.3 Reactive Processing for Nanofibrillation 353 10.3.4 Changes in Cellulose Crystalline Structure after Nanofibrillation 355 10.3.5 Preparation of BLCNF/Plastic Nanocomposites 355 10.3.6 Properties of BLCNF/Plastic Nanocomposites 356 10.4 Conclusions 357 References 358 11 Synthesis and Medicinal Properties of Polycarbonates and Resins from Renewable Sources 363 Selvaraj Mohana Roopan, T.V. Surendra and G. Madhumitha 11.1 Introduction 363 11.2 Synthesis 365 11.2.1 Chemical Synthesis of Polycarbonates 365 11.2.2 Synthesis of Polycarbonate from Eugenol 365 11.2.3 Synthesis of Renewable Bisphenols from 2,3-Pentanedione 366 11.2.4 Synthesis of Mesoporous PC-SiO2 367 11.2.5 Synthesis of Fluorinated Epoxy-Terminated Bisphenol A Polycarbonate (FBPA-PC EP) 367 11.2.6 Synthesis of Eugenol-Based Epoxy Resin (DEU-EP) 368 11.3 Polycarbonates from Renewable Resources 368 11.3.1 Ethylene from Biomass 368 11.3.2 Synthesis of Dianols via Microwave Degradation 369 11.3.3 Glycerol Carbonates from Recyclable Catalyst 369 11.3.4 Alternative to Phosgene for Aromatic Polycarbonate and Isocyanate Syntheses 370 11.3.5 Liquid-Phase Synthesis of Polycarbonate 371 11.4 Medicinal Properties 372 11.4.1 Polycarbonates in Drug Delivery 372 11.4.2 Polycarbonates in Gene Transformation 372 11.4.3 Cytotoxicity Test of Polycarbonates 373 11.4.4 Polycarbonates in Autoimmunity 374 11.4.5 Activation of Hyperprolactinemia and Immunostimulatory Response by Polycarbonates 375 11.5 Conclusion 376 References 376 12 Nanostructured Polymer Composites with Modified Carbon Nanotubes 381 A.P. Kharitonov, A.G. Tkachev, A.N. Blohin, I.V. Burakova, A.E. Burakov, A.E. Kucherova and A.A. Maksimkin 12.1 Introduction 382 12.1.1 Polymer Materials and Their Application 382 12.1.2 Carbon Nanotubes Application and Their Main Properties 387 12.2 Experimental Methods 390 12.2.1 Investigation of the CNTs Synthesis 390 12.2.2 CNTs Treatment 395 12.2.3 Composites Fabrication 395 12.2.4 Testing Procedures 395 12.3 Results and Discussion 396 12.3.1 FTIR Spectroscopy 396 12.3.2 Influence of Fluorination on the CNTs Specific Surface 396 12.3.3 X-Ray Photoelectron Spectroscopy Study 396 12.3.4 TGA of Virgin and Fluorinated CNTs 397 12.3.5 SEM Data of Composites Fracture 397 12.3.6 TGA and DSC of Composites 401 12.3.7 Mechanical Properties of Composites 402 12.3.7.1 Tensile Strength 402 12.3.7.2 Flexural Strength 403 12.4 Conclusion 403 Acknowledgments 404 References 404 13 Organic-Inorganic Nanocomposites Derived from Polysaccharides: Challenges and Opportunities 409 Ana Barros-Timmons, Fabiane Oliveira and José A. Lopes-da-Silva 13.1 Introduction 409 13.2 Constituents 412 13.2.1 Polysaccharides 412 13.2.2 Inorganic Nanofillers 413 13.3 Preparation of Polysaccharide-Derived Nanocomposites 414 13.3.1 Surface Modification 414 13.3.2 Addition of Components 416 13.3.3 In Situ Preparation of Nanoparticles via Precursors 419 13.4 Processing 421 13.4.1 Plasticizers 422 13.4.2 Conventional Processing Methods to Prepare Inorganic-Polysaccharide Nanocomposites 422 13.4.3 Emerging Methods to Prepare Inorganic-Polysaccharide Nanocomposites 424 13.5 Trends and Perspectives 426 Acknowledgments 426 References 427 14 Natural Polymer-Based Nanocomposites: A Greener Approach for the Future 433 Prasanta Baishya, Moon Mandal, Pankaj Gogoi and Tarun K. Maji 14.1 Introduction 433 14.2 Wood Polymer Nanocomposite 435 14.3 Basic Components of Wood Polymer Nanocomposite 436 14.4 Natural Polymer/Raw Material Used in Preparation of WPNC 436 14.4.1 Starch 436 14.4.2 Gluten 437 14.4.3 Chitosan 438 14.4.4 Vegetable Oil 439 14.4.4.1 Chemical Modification of Vegetable Oil 440 14.5 Wood 442 14.6 Cross-Linker 443 14.7 Modification of Natural Polymers 443 14.7.1 Grafting of Starch 443 14.7.2 Modification of Starch by Other Methods 444 14.7.3 Plasticizer 445 14.7.4 Nano-Reinforcing Agents 446 14.7.4.1 Montmorillonite 446 14.7.4.2 Metal Oxide Nanoparticles 447 14.7.4.3 Carbon Nanotubes 448 14.7.4.4 Nanocellulose 448 14.8 Properties of Natural Polymer-Based Composites 449 14.8.1 Mechanical Properties 449 14.8.2 Thermal Properties 450 14.8.3 Water Uptake and Dimensional Stability 450 14.9 Conclusion and Future Prospects 451 References 452 15 Cellulose Whisker-Based Green Polymer Composites 461 Silviya Elanthikkal, Tania Francis, C. Sangeetha and G. Unnikrishnan 15.1 Cellulose: Discovery, Sources, and Microstructure 462 15.1.1 Sources of Cellulose 462 15.1.2 Microstructure of Cellulose 463 15.2 Nanocellulose 466 15.2.1 Acid Hydrolysis 467 15.2.2 Mechanical Processes 470 15.2.3 TEMPO-Mediated Oxidation 471 15.2.4 Steam Explosion Method 472 15.2.5 Enzymatic Hydrolysis 473 15.2.6 Hydrolysis with Gaseous Acid 474 15.2.7 Treatment with Ionic Liquid 474 15.3 Polymer Composites 475 15.3.1 Polymer Composite Fabrication Techniques 476 15.3.1.1 Casting Evaporation Technique 476 15.3.1.2 Extrusion 476 15.3.1.3 Compression Molding 477 15.3.1.4 Injection Molding 478 15.3.2 Cellulose Whisker Composites: Literature-Based Discussion 478 15.3.2.1 Latex-Based Composites 478 15.3.2.2 Polar Polymer-Based Composites 479 15.3.2.3 Nonpolar Polymer-Based Composites 479 15.4 Applications of Cellulose Whisker Composites 483 15.4.1 Packaging 484 15.4.2 Automotive and Toys 484 15.4.3 Electronics 484 15.4.4 Biomedical Applications 485 References 486 16 Poly(Lactic Acid) Nanocomposites Reinforced with Different Additives 495 Ravi Babu Valapa, G. Pugazhenthi and Vimal Katiyar 16.1 Introduction 495 16.2 Biopolymers 497 16.2.1 Classification of Biopolymers 497 16.3 PLA Nanocomposites 502 16.3.1 PLA-Clay Nanocomposites 502 16.3.2 PLA-Carbonaceous Nanocomposites 507 16.3.3 PLA-Bio Filler Composites 510 16.3.4 PLA-Silica Nanocomposites 516 16.4 Summary 516 References 516 17 Nanocrystalline Cellulose: Green, Multifunctional and Sustainable Nanomaterials 523 Samira Bagheri, Nurhidayatullaili Muhd Julkapli and Negar Mansouri 17.1 Introduction: Natural Based Products 523 17.2 Nanocellulose 524 17.2.1 Nanocellulose: Properties 524 17.2.1.1 Nanocellulose: Mechanical Properties 526 17.2.1.2 Nanocellulose: Physical Properties 526 17.2.1.3 Nanocellulose: Surface Chemistry Properties 529 17.2.2 Nanocellulose: Synthesis Process 529 17.2.2.1 Conventional Acid Hydrolysis Process 529 17.2.3 Nanocellulose: Limitations 530 17.2.3.1 Single Particles Dispersion 530 17.2.3.2 Barrier Properties 530 17.2.3.3 Permeability Properties 531 17.3 Nanocellulose: Chemical Functionalization 531 17.3.1 Organic Compounds Functionalization 532 17.3.1.1 Molecular Functionalization 532 17.3.1.2 Macromolecular Functionalization 536 17.3.2 Nanocellulose: Inorganic Compounds Functionalization 539 17.3.2.1 Nanocellulose-Titanium Oxide Functionalization 539 17.3.2.2 Nanocellulose-Fluorine Functionalization 539 17.3.2.3 Nanocellulose-Gold Functionalization 540 17.3.2.4 Nanocellulose-Silver Functionalization 540 17.3.2.5 Nanocellulose-Pd Functionalization 540 17.3.2.6 Nanocellulose-CdS Functionalization 541 17.4 Applications of Functionalized Nanocellulose 541 17.4.1 Wastewater Treatment 541 17.4.2 Biomedical Applications 542 17.4.3 Biosensor and Bioimaging 542 17.4.4 Catalysis 543 17.5 Conclusion 543 Acknowledgment 544 References 544 18 Halloysite-Based Bionanocomposites 557 Giuseppe Lazzara, Marina Massaro, Stefana Milioto and Serena Riela 18.1 Introduction 557 18.2 Biodegradable Polymers 559 18.2.1 Cellulose 559 18.2.2 Chitosan 560 18.2.3 Starch 561 18.2.4 Alginate 562 18.2.5 Pectin 562 18.3 Natural Inorganic Filler: Halloysite Nanotubes 563 18.3.1 Functionalization of HNTs 565 18.3.1.1 Functionalization of External Surface 565 18.3.1.2 Functionalization of the Lumen 567 18.3.2 Composites Structured with Halloysite 568 18.4 Bionanocomposites 569 18.4.1 HNT-Biopolymer Nanocomposite Formation 569 18.4.2 Properties of HNTs-Biopolymer Nanocomposites 570 18.4.2.1 Bionanocomposites Surface Morphology 571 18.4.2.2 Bionanocomposites Mechanical and Thermal Response 573 18.5 Applications of HNT/Polysaccharide Nanocomposites 576 18.6 Conclusions 578 References 579 19 Nanostructurated Composites Based on Biodegradable Polymers and Silver Nanoparticles 585 Oana Fuf
, George Mihail Vl
sceanu, Georgiana Dolete, Daniela Cabuzu, Rebecca Alexandra Puiu, Andreea Cîrj
, Bogdan Nicoar
and Alexandru Mihai Grumezescu 19.1 Introduction 585 19.2 Silver Nanoparticles 586 19.3 Applications of Silver Nanoparticles 588 19.4 Silver Nanoparticle Composites 594 19.4.1 In situ and ex situ Strategies for AgNPs-Based Composites with Polymer Matrix 594 19.4.2 Other AgNPs Composites 599 19.5 Applications of Silver Nanoparticles Composites 600 19.5.1 Active Substance Delivery Composites 600 19.5.2 Antimicrobial Composites 603 19.6 Conclusions and Future Prospectives 607 Acknowledgments 608 References 608 20 Starch-Based Biomaterials and Nanocomposites 623 Arantzazu Valdés and María Carmen Garrigós 20.1 Introduction 623 20.2 Starch: Structure and Characteristics 625 20.3 Applicability of Starch in Food Industry 627 20.3.1 Starch Biomaterials: Films, Coatings, and Blends 629 20.3.2 Reinforced Materials 631 20.3.3 Starch Nanoparticles 632 20.4 Conclusion 632 References 633 21 Green Nanocomposites-Based on PLA and Natural Organic Fillers 637 Roberto Scaffaro, Luigi Botta, Francesco Lopresti, Andrea Maio and Fiorenza Sutera 21.1 Introduction 637 21.2 Poly(lactic acid) (PLA) 638 21.3 Natural Organic Nanofillers 640 21.3.1 Cellulose 641 21.3.1.1 Main Derivatization Methods Used to Increase Cellulose Affinity to PLA 643 21.3.2 Chitin 645 21.3.3 Starch 646 21.4 Bionanocomposites Based on PLA 648 21.4.1 PLA/cellulose Nanocomposites 648 21.4.1.1 Preparation 648 21.4.1.2 Properties 651 21.4.1.3 Degradation 653 21.4.2 PLA/chitin Nanocomposites 654 21.4.2.1 Preparation 654 21.4.2.2 Properties 655 21.4.3 PLA/starch Nanocomposites 656 21.4.3.1 Preparation 656 21.4.3.2 Properties 657 21.5 Conclusions 659 References 659 22 Chitin and Chitosan-Based (NANO) Composites 671 André R. Fajardo, Antonio G. B. Pereira, Alessandro F. Martins, Alexandre T. Paulino, Edvani C. Muniz and You-Lo Hsieh 22.1 Introduction 672 22.1.1 Chitin 672 22.1.2 Chitosan 673 22.2 Chitin and Chitosan Properties and Processing 674 22.3 Preparation and Characterization of Ct and Cs Composites: An Overview 675 22.4 Ct- and Cs-Metal Composites 679 22.5 Ct and Cs-Inorganic Composites 685 22.5.1 Food Packaging 685 22.5.2 Membranes 685 22.5.3 Biomedical Uses 685 22.5.4 Environmental Remediation 686 22.6 Composites Based on Ct and Cs Whiskers 687 22.7 Overview, Perspectives, and Conclusion 690 References 691 Index 701
F with Super-Heated Steam 342 10.2.3.1 SHS Treatment 342 10.2.3.2 Characterization Methods of sB
F 342 10.2.3.3 Changes in Surface Morphology of SHS-Treated Bamboo 344 10.2.3.4 Changes in Chemical and Physical Properties of SHS-Treated Bamboo 345 10.2.3.5 Classification of sB
F 348 10.2.4 Preparation of sB
F/Plastic Microcomposites 349 10.2.4.1 Mechanical and Physical Properties of sB
F/Plastic Microcomposites 349 10.2.4.2 Melt Processability of sB
F/Plastic Microcomposites 350 10.2.4.3 Electrical Properties of sB
F/Plastic Microcomposites 350 10.3 Bamboo Lignocellulosic Nanofiber and Nanocomposite 352 10.3.1 Nanofibrillation Technologies of Cellulose 352 10.3.2 Nanofibrillation Technologies of Lignocellulose 352 10.3.3 Reactive Processing for Nanofibrillation 353 10.3.4 Changes in Cellulose Crystalline Structure after Nanofibrillation 355 10.3.5 Preparation of BLCNF/Plastic Nanocomposites 355 10.3.6 Properties of BLCNF/Plastic Nanocomposites 356 10.4 Conclusions 357 References 358 11 Synthesis and Medicinal Properties of Polycarbonates and Resins from Renewable Sources 363 Selvaraj Mohana Roopan, T.V. Surendra and G. Madhumitha 11.1 Introduction 363 11.2 Synthesis 365 11.2.1 Chemical Synthesis of Polycarbonates 365 11.2.2 Synthesis of Polycarbonate from Eugenol 365 11.2.3 Synthesis of Renewable Bisphenols from 2,3-Pentanedione 366 11.2.4 Synthesis of Mesoporous PC-SiO2 367 11.2.5 Synthesis of Fluorinated Epoxy-Terminated Bisphenol A Polycarbonate (FBPA-PC EP) 367 11.2.6 Synthesis of Eugenol-Based Epoxy Resin (DEU-EP) 368 11.3 Polycarbonates from Renewable Resources 368 11.3.1 Ethylene from Biomass 368 11.3.2 Synthesis of Dianols via Microwave Degradation 369 11.3.3 Glycerol Carbonates from Recyclable Catalyst 369 11.3.4 Alternative to Phosgene for Aromatic Polycarbonate and Isocyanate Syntheses 370 11.3.5 Liquid-Phase Synthesis of Polycarbonate 371 11.4 Medicinal Properties 372 11.4.1 Polycarbonates in Drug Delivery 372 11.4.2 Polycarbonates in Gene Transformation 372 11.4.3 Cytotoxicity Test of Polycarbonates 373 11.4.4 Polycarbonates in Autoimmunity 374 11.4.5 Activation of Hyperprolactinemia and Immunostimulatory Response by Polycarbonates 375 11.5 Conclusion 376 References 376 12 Nanostructured Polymer Composites with Modified Carbon Nanotubes 381 A.P. Kharitonov, A.G. Tkachev, A.N. Blohin, I.V. Burakova, A.E. Burakov, A.E. Kucherova and A.A. Maksimkin 12.1 Introduction 382 12.1.1 Polymer Materials and Their Application 382 12.1.2 Carbon Nanotubes Application and Their Main Properties 387 12.2 Experimental Methods 390 12.2.1 Investigation of the CNTs Synthesis 390 12.2.2 CNTs Treatment 395 12.2.3 Composites Fabrication 395 12.2.4 Testing Procedures 395 12.3 Results and Discussion 396 12.3.1 FTIR Spectroscopy 396 12.3.2 Influence of Fluorination on the CNTs Specific Surface 396 12.3.3 X-Ray Photoelectron Spectroscopy Study 396 12.3.4 TGA of Virgin and Fluorinated CNTs 397 12.3.5 SEM Data of Composites Fracture 397 12.3.6 TGA and DSC of Composites 401 12.3.7 Mechanical Properties of Composites 402 12.3.7.1 Tensile Strength 402 12.3.7.2 Flexural Strength 403 12.4 Conclusion 403 Acknowledgments 404 References 404 13 Organic-Inorganic Nanocomposites Derived from Polysaccharides: Challenges and Opportunities 409 Ana Barros-Timmons, Fabiane Oliveira and José A. Lopes-da-Silva 13.1 Introduction 409 13.2 Constituents 412 13.2.1 Polysaccharides 412 13.2.2 Inorganic Nanofillers 413 13.3 Preparation of Polysaccharide-Derived Nanocomposites 414 13.3.1 Surface Modification 414 13.3.2 Addition of Components 416 13.3.3 In Situ Preparation of Nanoparticles via Precursors 419 13.4 Processing 421 13.4.1 Plasticizers 422 13.4.2 Conventional Processing Methods to Prepare Inorganic-Polysaccharide Nanocomposites 422 13.4.3 Emerging Methods to Prepare Inorganic-Polysaccharide Nanocomposites 424 13.5 Trends and Perspectives 426 Acknowledgments 426 References 427 14 Natural Polymer-Based Nanocomposites: A Greener Approach for the Future 433 Prasanta Baishya, Moon Mandal, Pankaj Gogoi and Tarun K. Maji 14.1 Introduction 433 14.2 Wood Polymer Nanocomposite 435 14.3 Basic Components of Wood Polymer Nanocomposite 436 14.4 Natural Polymer/Raw Material Used in Preparation of WPNC 436 14.4.1 Starch 436 14.4.2 Gluten 437 14.4.3 Chitosan 438 14.4.4 Vegetable Oil 439 14.4.4.1 Chemical Modification of Vegetable Oil 440 14.5 Wood 442 14.6 Cross-Linker 443 14.7 Modification of Natural Polymers 443 14.7.1 Grafting of Starch 443 14.7.2 Modification of Starch by Other Methods 444 14.7.3 Plasticizer 445 14.7.4 Nano-Reinforcing Agents 446 14.7.4.1 Montmorillonite 446 14.7.4.2 Metal Oxide Nanoparticles 447 14.7.4.3 Carbon Nanotubes 448 14.7.4.4 Nanocellulose 448 14.8 Properties of Natural Polymer-Based Composites 449 14.8.1 Mechanical Properties 449 14.8.2 Thermal Properties 450 14.8.3 Water Uptake and Dimensional Stability 450 14.9 Conclusion and Future Prospects 451 References 452 15 Cellulose Whisker-Based Green Polymer Composites 461 Silviya Elanthikkal, Tania Francis, C. Sangeetha and G. Unnikrishnan 15.1 Cellulose: Discovery, Sources, and Microstructure 462 15.1.1 Sources of Cellulose 462 15.1.2 Microstructure of Cellulose 463 15.2 Nanocellulose 466 15.2.1 Acid Hydrolysis 467 15.2.2 Mechanical Processes 470 15.2.3 TEMPO-Mediated Oxidation 471 15.2.4 Steam Explosion Method 472 15.2.5 Enzymatic Hydrolysis 473 15.2.6 Hydrolysis with Gaseous Acid 474 15.2.7 Treatment with Ionic Liquid 474 15.3 Polymer Composites 475 15.3.1 Polymer Composite Fabrication Techniques 476 15.3.1.1 Casting Evaporation Technique 476 15.3.1.2 Extrusion 476 15.3.1.3 Compression Molding 477 15.3.1.4 Injection Molding 478 15.3.2 Cellulose Whisker Composites: Literature-Based Discussion 478 15.3.2.1 Latex-Based Composites 478 15.3.2.2 Polar Polymer-Based Composites 479 15.3.2.3 Nonpolar Polymer-Based Composites 479 15.4 Applications of Cellulose Whisker Composites 483 15.4.1 Packaging 484 15.4.2 Automotive and Toys 484 15.4.3 Electronics 484 15.4.4 Biomedical Applications 485 References 486 16 Poly(Lactic Acid) Nanocomposites Reinforced with Different Additives 495 Ravi Babu Valapa, G. Pugazhenthi and Vimal Katiyar 16.1 Introduction 495 16.2 Biopolymers 497 16.2.1 Classification of Biopolymers 497 16.3 PLA Nanocomposites 502 16.3.1 PLA-Clay Nanocomposites 502 16.3.2 PLA-Carbonaceous Nanocomposites 507 16.3.3 PLA-Bio Filler Composites 510 16.3.4 PLA-Silica Nanocomposites 516 16.4 Summary 516 References 516 17 Nanocrystalline Cellulose: Green, Multifunctional and Sustainable Nanomaterials 523 Samira Bagheri, Nurhidayatullaili Muhd Julkapli and Negar Mansouri 17.1 Introduction: Natural Based Products 523 17.2 Nanocellulose 524 17.2.1 Nanocellulose: Properties 524 17.2.1.1 Nanocellulose: Mechanical Properties 526 17.2.1.2 Nanocellulose: Physical Properties 526 17.2.1.3 Nanocellulose: Surface Chemistry Properties 529 17.2.2 Nanocellulose: Synthesis Process 529 17.2.2.1 Conventional Acid Hydrolysis Process 529 17.2.3 Nanocellulose: Limitations 530 17.2.3.1 Single Particles Dispersion 530 17.2.3.2 Barrier Properties 530 17.2.3.3 Permeability Properties 531 17.3 Nanocellulose: Chemical Functionalization 531 17.3.1 Organic Compounds Functionalization 532 17.3.1.1 Molecular Functionalization 532 17.3.1.2 Macromolecular Functionalization 536 17.3.2 Nanocellulose: Inorganic Compounds Functionalization 539 17.3.2.1 Nanocellulose-Titanium Oxide Functionalization 539 17.3.2.2 Nanocellulose-Fluorine Functionalization 539 17.3.2.3 Nanocellulose-Gold Functionalization 540 17.3.2.4 Nanocellulose-Silver Functionalization 540 17.3.2.5 Nanocellulose-Pd Functionalization 540 17.3.2.6 Nanocellulose-CdS Functionalization 541 17.4 Applications of Functionalized Nanocellulose 541 17.4.1 Wastewater Treatment 541 17.4.2 Biomedical Applications 542 17.4.3 Biosensor and Bioimaging 542 17.4.4 Catalysis 543 17.5 Conclusion 543 Acknowledgment 544 References 544 18 Halloysite-Based Bionanocomposites 557 Giuseppe Lazzara, Marina Massaro, Stefana Milioto and Serena Riela 18.1 Introduction 557 18.2 Biodegradable Polymers 559 18.2.1 Cellulose 559 18.2.2 Chitosan 560 18.2.3 Starch 561 18.2.4 Alginate 562 18.2.5 Pectin 562 18.3 Natural Inorganic Filler: Halloysite Nanotubes 563 18.3.1 Functionalization of HNTs 565 18.3.1.1 Functionalization of External Surface 565 18.3.1.2 Functionalization of the Lumen 567 18.3.2 Composites Structured with Halloysite 568 18.4 Bionanocomposites 569 18.4.1 HNT-Biopolymer Nanocomposite Formation 569 18.4.2 Properties of HNTs-Biopolymer Nanocomposites 570 18.4.2.1 Bionanocomposites Surface Morphology 571 18.4.2.2 Bionanocomposites Mechanical and Thermal Response 573 18.5 Applications of HNT/Polysaccharide Nanocomposites 576 18.6 Conclusions 578 References 579 19 Nanostructurated Composites Based on Biodegradable Polymers and Silver Nanoparticles 585 Oana Fuf
, George Mihail Vl
sceanu, Georgiana Dolete, Daniela Cabuzu, Rebecca Alexandra Puiu, Andreea Cîrj
, Bogdan Nicoar
and Alexandru Mihai Grumezescu 19.1 Introduction 585 19.2 Silver Nanoparticles 586 19.3 Applications of Silver Nanoparticles 588 19.4 Silver Nanoparticle Composites 594 19.4.1 In situ and ex situ Strategies for AgNPs-Based Composites with Polymer Matrix 594 19.4.2 Other AgNPs Composites 599 19.5 Applications of Silver Nanoparticles Composites 600 19.5.1 Active Substance Delivery Composites 600 19.5.2 Antimicrobial Composites 603 19.6 Conclusions and Future Prospectives 607 Acknowledgments 608 References 608 20 Starch-Based Biomaterials and Nanocomposites 623 Arantzazu Valdés and María Carmen Garrigós 20.1 Introduction 623 20.2 Starch: Structure and Characteristics 625 20.3 Applicability of Starch in Food Industry 627 20.3.1 Starch Biomaterials: Films, Coatings, and Blends 629 20.3.2 Reinforced Materials 631 20.3.3 Starch Nanoparticles 632 20.4 Conclusion 632 References 633 21 Green Nanocomposites-Based on PLA and Natural Organic Fillers 637 Roberto Scaffaro, Luigi Botta, Francesco Lopresti, Andrea Maio and Fiorenza Sutera 21.1 Introduction 637 21.2 Poly(lactic acid) (PLA) 638 21.3 Natural Organic Nanofillers 640 21.3.1 Cellulose 641 21.3.1.1 Main Derivatization Methods Used to Increase Cellulose Affinity to PLA 643 21.3.2 Chitin 645 21.3.3 Starch 646 21.4 Bionanocomposites Based on PLA 648 21.4.1 PLA/cellulose Nanocomposites 648 21.4.1.1 Preparation 648 21.4.1.2 Properties 651 21.4.1.3 Degradation 653 21.4.2 PLA/chitin Nanocomposites 654 21.4.2.1 Preparation 654 21.4.2.2 Properties 655 21.4.3 PLA/starch Nanocomposites 656 21.4.3.1 Preparation 656 21.4.3.2 Properties 657 21.5 Conclusions 659 References 659 22 Chitin and Chitosan-Based (NANO) Composites 671 André R. Fajardo, Antonio G. B. Pereira, Alessandro F. Martins, Alexandre T. Paulino, Edvani C. Muniz and You-Lo Hsieh 22.1 Introduction 672 22.1.1 Chitin 672 22.1.2 Chitosan 673 22.2 Chitin and Chitosan Properties and Processing 674 22.3 Preparation and Characterization of Ct and Cs Composites: An Overview 675 22.4 Ct- and Cs-Metal Composites 679 22.5 Ct and Cs-Inorganic Composites 685 22.5.1 Food Packaging 685 22.5.2 Membranes 685 22.5.3 Biomedical Uses 685 22.5.4 Environmental Remediation 686 22.6 Composites Based on Ct and Cs Whiskers 687 22.7 Overview, Perspectives, and Conclusion 690 References 691 Index 701