Handbook of Financial Time Series (eBook, PDF)
290,95 €
inkl. MwSt.
Sofort per Download lieferbar
Handbook of Financial Time Series (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 7.8MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Eric ZivotModeling Financial Time Series with S-PLUS® (eBook, PDF)96,29 €
- Daniel StraumannEstimation in Conditionally Heteroscedastic Time Series Models (eBook, PDF)39,95 €
- Stefano M. IacusSimulation and Inference for Stochastic Differential Equations (eBook, PDF)117,69 €
- Abdulkader AljandaliEconomic and Financial Modelling with EViews (eBook, PDF)85,59 €
- Theory and Applications of Time Series Analysis and Forecasting (eBook, PDF)213,99 €
- Víctor GómezMultivariate Time Series With Linear State Space Structure (eBook, PDF)96,29 €
- Masanobu TaniguchiStatistical Inference for Financial Engineering (eBook, PDF)53,49 €
-
-
-
Produktdetails
- Verlag: Springer Berlin
- Erscheinungstermin: 21. April 2009
- Englisch
- ISBN-13: 9783540712978
- Artikelnr.: 37360768
Recent Developments in GARCH Modeling.- An Introduction to Univariate GARCH Models.- Stationarity, Mixing, Distributional Properties and Moments of GARCH(p, q)#x2013;Processes.- ARCH(#x221E;) Models and Long Memory Properties.- A Tour in the Asymptotic Theory of GARCH Estimation.- Practical Issues in the Analysis of Univariate GARCH Models.- Semiparametric and Nonparametric ARCH Modeling.- Varying Coefficient GARCH Models.- Extreme Value Theory for GARCH Processes.- Multivariate GARCH Models.- Recent Developments in Stochastic Volatility Modeling.- Stochastic Volatility: Origins and Overview.- Probabilistic Properties of Stochastic Volatility Models.- Moment#x2013;Based Estimation of Stochastic Volatility Models.- Parameter Estimation and Practical Aspects of Modeling Stochastic Volatility.- Stochastic Volatility Models with Long Memory.- Extremes of Stochastic Volatility Models.- Multivariate Stochastic Volatility.- Topics in Continuous Time Processes.- An Overview of Asset–Price Models.- Ornstein–Uhlenbeck Processes and Extensions.- Jump–Type Lévy Processes.- Lévy–Driven Continuous–Time ARMA Processes.- Continuous Time Approximations to GARCH and Stochastic Volatility Models.- Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance.- Parametric Inference for Discretely Sampled Stochastic Differential Equations.- Realized Volatility.- Estimating Volatility in the Presence of Market Microstructure Noise: A Review of the Theory and Practical Considerations.- Option Pricing.- An Overview of Interest Rate Theory.- Extremes of Continuous–Time Processes..- Topics in Cointegration and Unit Roots.- Cointegration: Overview and Development.- Time Series with Roots on or Near the Unit Circle.- Fractional Cointegration.- Special Topics –Risk.- Different Kinds of Risk.- Value–at–Risk Models.- Copula–Based Models for Financial Time Series.- Credit Risk Modeling.- Special Topics – Time Series Methods.- Evaluating Volatility and Correlation Forecasts.- Structural Breaks in Financial Time Series.- An Introduction to Regime Switching Time Series Models.- Model Selection.- Nonparametric Modeling in Financial Time Series.- Modelling Financial High Frequency Data Using Point Processes.- Special Topics – Simulation Based Methods.- Resampling and Subsampling for Financial Time Series.- Markov Chain Monte Carlo.- Particle Filtering.
Recent Developments in GARCH Modeling.- An Introduction to Univariate GARCH Models.- Stationarity, Mixing, Distributional Properties and Moments of GARCH(p, q)#x2013;Processes.- ARCH(#x221E;) Models and Long Memory Properties.- A Tour in the Asymptotic Theory of GARCH Estimation.- Practical Issues in the Analysis of Univariate GARCH Models.- Semiparametric and Nonparametric ARCH Modeling.- Varying Coefficient GARCH Models.- Extreme Value Theory for GARCH Processes.- Multivariate GARCH Models.- Recent Developments in Stochastic Volatility Modeling.- Stochastic Volatility: Origins and Overview.- Probabilistic Properties of Stochastic Volatility Models.- Moment#x2013;Based Estimation of Stochastic Volatility Models.- Parameter Estimation and Practical Aspects of Modeling Stochastic Volatility.- Stochastic Volatility Models with Long Memory.- Extremes of Stochastic Volatility Models.- Multivariate Stochastic Volatility.- Topics in Continuous Time Processes.- An Overview of Asset–Price Models.- Ornstein–Uhlenbeck Processes and Extensions.- Jump–Type Lévy Processes.- Lévy–Driven Continuous–Time ARMA Processes.- Continuous Time Approximations to GARCH and Stochastic Volatility Models.- Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance.- Parametric Inference for Discretely Sampled Stochastic Differential Equations.- Realized Volatility.- Estimating Volatility in the Presence of Market Microstructure Noise: A Review of the Theory and Practical Considerations.- Option Pricing.- An Overview of Interest Rate Theory.- Extremes of Continuous–Time Processes..- Topics in Cointegration and Unit Roots.- Cointegration: Overview and Development.- Time Series with Roots on or Near the Unit Circle.- Fractional Cointegration.- Special Topics –Risk.- Different Kinds of Risk.- Value–at–Risk Models.- Copula–Based Models for Financial Time Series.- Credit Risk Modeling.- Special Topics – Time Series Methods.- Evaluating Volatility and Correlation Forecasts.- Structural Breaks in Financial Time Series.- An Introduction to Regime Switching Time Series Models.- Model Selection.- Nonparametric Modeling in Financial Time Series.- Modelling Financial High Frequency Data Using Point Processes.- Special Topics – Simulation Based Methods.- Resampling and Subsampling for Financial Time Series.- Markov Chain Monte Carlo.- Particle Filtering.