Handbook of Matching and Weighting Adjustments for Causal Inference (eBook, ePUB)
Redaktion: Zubizarreta, José R.; Rosenbaum, Paul R.; Small, Dylan S.; Stuart, Elizabeth A.
204,95 €
204,95 €
inkl. MwSt.
Sofort per Download lieferbar
102 °P sammeln
204,95 €
Als Download kaufen
204,95 €
inkl. MwSt.
Sofort per Download lieferbar
102 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
204,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
102 °P sammeln
Handbook of Matching and Weighting Adjustments for Causal Inference (eBook, ePUB)
Redaktion: Zubizarreta, José R.; Rosenbaum, Paul R.; Small, Dylan S.; Stuart, Elizabeth A.
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Multivariate matching and weighting are two modern forms of adjustment. The book is for researchers in medicine, economics, public health, psychology, epidemiology, public program evaluation, and statistics who examine evidence of the effects on human beings of treatments, policies or exposures.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 7.3MB
Andere Kunden interessierten sich auch für
- Handbook of Matching and Weighting Adjustments for Causal Inference (eBook, PDF)204,95 €
- Michael J. DanielsBayesian Nonparametrics for Causal Inference and Missing Data (eBook, ePUB)52,95 €
- Momiao XiongArtificial Intelligence and Causal Inference (eBook, ePUB)47,95 €
- Gianluca ManzoAgent-based Models and Causal Inference (eBook, ePUB)72,99 €
- Judea PearlCausal Inference in Statistics (eBook, ePUB)29,99 €
- Virgilio Gomez-RubioBayesian inference with INLA (eBook, ePUB)48,95 €
- Adelchi AzzaliniStatistical Inference Based on the likelihood (eBook, ePUB)46,95 €
-
-
-
Multivariate matching and weighting are two modern forms of adjustment. The book is for researchers in medicine, economics, public health, psychology, epidemiology, public program evaluation, and statistics who examine evidence of the effects on human beings of treatments, policies or exposures.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 634
- Erscheinungstermin: 11. April 2023
- Englisch
- ISBN-13: 9781000850857
- Artikelnr.: 67545180
- Verlag: Taylor & Francis
- Seitenzahl: 634
- Erscheinungstermin: 11. April 2023
- Englisch
- ISBN-13: 9781000850857
- Artikelnr.: 67545180
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
José Zubizarreta, PhD, is an associate professor in the Department of Health Care Policy at Harvard Medical School and in the Department Biostatistics at Harvard University. He is a Fellow of the American Statistical Association, and is a recipient of the Kenneth Rothman Award, the William Cochran Award, and the Tom Ten Have Memorial Award. Elizabeth A. Stuart, Ph.D. is Bloomberg Professor of American Health in the Department of Mental Health, the Department of Biostatistics and the Department of Health Policy and Management at Johns Hopkins Bloomberg School of Public Health. She is a Fellow of the American Statistical Association, and she received the mid-career award from the Health Policy Statistics Section of the ASA, the Gertrude Cox Award for applied statistics, Harvard University's Myrto Lefkopoulou Award for excellence in Biostatistics, and the Society for Epidemiologic Research Marshall Joffe Epidemiologic Methods award. Dylan Small, PhD is the Universal Furniture Professor in the Department of Statistics and Data Science of the Wharton School of the University of Pennsylvania. He is a Fellow of the American Statistical Association and an Institute of Mathematical Statistics Medallion Lecturer. Paul R. Rosenbaum is emeritus professor of Statistics and Data Science at the Wharton School of the University of Pennsylvania. From the Committee of Presidents of Statistical Societies, he received the R. A. Fisher Award and the George W. Snedecor Award. He is the author of several books, including Design of Observational Studies and Replication and Evidence Factors in Observational Studies.
Part 1: Conceptual issues 1. Overview of methods for adjustment and
applications in the social and behavioral sciences: The role of study
design 2. Propensity score 3. Generalization and Transportability Part 2:
Matching 4. Optimization techniques in multivariate matching 5. Optimal
Full matching 6. Fine balance and its variations in modern optimal matching
7. Matching with instrumental variables 8. Covariate Adjustment in
Regression Discontinuity Designs 9. Risk Set Matching 10. Matching with
Multilevel Data 11. Effect Modification in Observational Studies 12.
Optimal Nonbipartite Matching 13. Matching Methods for Large Observational
Studies Part 3: Weighting 14. Overlap Weighting 15. Covariate Balancing
Propensity Score 16. Balancing Weights for Causal Inference 17. Assessing
Principal Causal Effects Using Principal Score Methods 18. Incremental
Causal Effects: An Introduction and Review 19. Weighting Estimators for
Causal Mediation Part 4: Machine Learning Adjustments 20. Machine Learning
for Causal Inference 21. Treatment Heterogeneity with Survival Outcomes 22.
Why Machine Learning Cannot Ignore Maximum Likelihood Estimation 23.
Bayesian Propensity Score methods and Related Approaches for Confounding
Adjustment Part 5: Beyond Adjustments 24. How to Be a Good Critic of an
Observational Study 25. Sensitivity Analysis 26. Evidence Factors
applications in the social and behavioral sciences: The role of study
design 2. Propensity score 3. Generalization and Transportability Part 2:
Matching 4. Optimization techniques in multivariate matching 5. Optimal
Full matching 6. Fine balance and its variations in modern optimal matching
7. Matching with instrumental variables 8. Covariate Adjustment in
Regression Discontinuity Designs 9. Risk Set Matching 10. Matching with
Multilevel Data 11. Effect Modification in Observational Studies 12.
Optimal Nonbipartite Matching 13. Matching Methods for Large Observational
Studies Part 3: Weighting 14. Overlap Weighting 15. Covariate Balancing
Propensity Score 16. Balancing Weights for Causal Inference 17. Assessing
Principal Causal Effects Using Principal Score Methods 18. Incremental
Causal Effects: An Introduction and Review 19. Weighting Estimators for
Causal Mediation Part 4: Machine Learning Adjustments 20. Machine Learning
for Causal Inference 21. Treatment Heterogeneity with Survival Outcomes 22.
Why Machine Learning Cannot Ignore Maximum Likelihood Estimation 23.
Bayesian Propensity Score methods and Related Approaches for Confounding
Adjustment Part 5: Beyond Adjustments 24. How to Be a Good Critic of an
Observational Study 25. Sensitivity Analysis 26. Evidence Factors
Part 1: Conceptual issues 1. Overview of methods for adjustment and
applications in the social and behavioral sciences: The role of study
design 2. Propensity score 3. Generalization and Transportability Part 2:
Matching 4. Optimization techniques in multivariate matching 5. Optimal
Full matching 6. Fine balance and its variations in modern optimal matching
7. Matching with instrumental variables 8. Covariate Adjustment in
Regression Discontinuity Designs 9. Risk Set Matching 10. Matching with
Multilevel Data 11. Effect Modification in Observational Studies 12.
Optimal Nonbipartite Matching 13. Matching Methods for Large Observational
Studies Part 3: Weighting 14. Overlap Weighting 15. Covariate Balancing
Propensity Score 16. Balancing Weights for Causal Inference 17. Assessing
Principal Causal Effects Using Principal Score Methods 18. Incremental
Causal Effects: An Introduction and Review 19. Weighting Estimators for
Causal Mediation Part 4: Machine Learning Adjustments 20. Machine Learning
for Causal Inference 21. Treatment Heterogeneity with Survival Outcomes 22.
Why Machine Learning Cannot Ignore Maximum Likelihood Estimation 23.
Bayesian Propensity Score methods and Related Approaches for Confounding
Adjustment Part 5: Beyond Adjustments 24. How to Be a Good Critic of an
Observational Study 25. Sensitivity Analysis 26. Evidence Factors
applications in the social and behavioral sciences: The role of study
design 2. Propensity score 3. Generalization and Transportability Part 2:
Matching 4. Optimization techniques in multivariate matching 5. Optimal
Full matching 6. Fine balance and its variations in modern optimal matching
7. Matching with instrumental variables 8. Covariate Adjustment in
Regression Discontinuity Designs 9. Risk Set Matching 10. Matching with
Multilevel Data 11. Effect Modification in Observational Studies 12.
Optimal Nonbipartite Matching 13. Matching Methods for Large Observational
Studies Part 3: Weighting 14. Overlap Weighting 15. Covariate Balancing
Propensity Score 16. Balancing Weights for Causal Inference 17. Assessing
Principal Causal Effects Using Principal Score Methods 18. Incremental
Causal Effects: An Introduction and Review 19. Weighting Estimators for
Causal Mediation Part 4: Machine Learning Adjustments 20. Machine Learning
for Causal Inference 21. Treatment Heterogeneity with Survival Outcomes 22.
Why Machine Learning Cannot Ignore Maximum Likelihood Estimation 23.
Bayesian Propensity Score methods and Related Approaches for Confounding
Adjustment Part 5: Beyond Adjustments 24. How to Be a Good Critic of an
Observational Study 25. Sensitivity Analysis 26. Evidence Factors